Skip to main content

Mathematical Modeling of EMF Energy Absorption in Biological Systems

  • Chapter
Biological Effects of Electromagnetic Fields

Abstract

In order to study the effects of EMF to biological systems, we need first to understand in quantitative terms the energy per unit mass absorbed by the human body exposed to an EMF source. On a microscopic level, the applied field induces temporary electric dipoles, align permanent dipoles and causes drift of the charges in biological tissues. The friction associated with the movement of these dipoles and charges is what causes the rise in temperature and thus energy absorption in the tissue material. One measure of this microscopic effect is the time-averaged absorbed power known as Specific Absorption Rate (SAR). To arrive at quantitative measures, we need to obtain first useful models for both the EMF source and the biological system affected in order to obtain reliable coupling models between EMF and the affected organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen SJ and Hurt WD (1979): Calorimetric measurement of microwave energy absorption in mice after simultaneous exposure of 18 animals, Radio Sci. 14, 1–4.

    Article  Google Scholar 

  2. Balzano Q, Garay O, and Manning TJ (1995): Electromagnetic energy exposure of simulated users of portable cellular telephones, IEEE Trans. Veh. Tech. VT-44, 390–403.

    Google Scholar 

  3. Bassen HI, Herchenroeder P, Cheung A, and Neuder SM (1977): Evaluation of implantable electric field probes within finite simulated tissues, Radio Sci. 12, 15–23.

    Article  Google Scholar 

  4. Bell EL, Cohoon DK, and Penn JW (1977): Mie: A fortran program for computing power deposition in spherical dielectrics through application of Mie theory, USAF School of Aerospace Medicine, Brooks AFB, TX, Rep. SAM-TR77–11.

    Google Scholar 

  5. Blackman CF and Black JA (1977): Measurement of microwave radiation absorbed in biological systems, 2, analysis of Dewar-flask calorimetry, Radio Sci. 12, 9–14.

    Article  Google Scholar 

  6. Borup D T, Sullivan D M, and Gandhi OP (1987): Comparison of the FFT Conjugate Gradient Method and the Finite-Difference Time-Domain method for the 2D Absorption Problem, IEEE Transaction on Microwave Theory and Techniques, vol. MTT 35, no. 4, pp. 383–385.

    Article  Google Scholar 

  7. Burdette EC (1980): In vivo probe measurement technique for determining dielectric properties at VHF through microwave frewquencies, IEEE Trans MTT28(4): 414–427.

    Google Scholar 

  8. Cetas TC (1990): Temeprature, In Lehman JF (ed): Therapeutic Heat and Cold, Baltimore, MD, Williams and Wilkins, 1–61.

    Google Scholar 

  9. Cetas T and Conner WG (1978): Practical thermometry with a thermographic camera—calibration, transmission, and emittance measurements, Rev.-Sci. Instn. 49, 245–254.

    Article  Google Scholar 

  10. Chatterjee I, Gu YG, and Gandhi OP (1985): Quantification of electromagnetic absorption in humans from body-mounted communication transceivers, IEEE Transactions on Vehicular Technology, 34, 55–62.

    Article  Google Scholar 

  11. Chen J Y, Gandhi OP, and Conover DL (1991): SAR and Induced Current Distributions for Operator Exposure to RF Dielectric Sealers,“ IEEE Transactions on Electromagnetic Compatibility, vol. EMC-33, no. 3, 252–261.

    Article  Google Scholar 

  12. Chen JY and Gandhi OP (1989): RF Currents Induced in an Anatomically-Based Model of a Human for Plane-Wave Exposures 20–100 MHz, Health Physics, vol. 57, 89–98

    Article  Google Scholar 

  13. Chen KM and Guru BS (1977): Internal EM Field and Absorbed Power Density in Human Torsos Induced by 1 [E] 500 MHz EM Waves, “ IEEE Transactions on Microwave Theory and Techniques, vol. MU-25 (9), 746–755.

    Google Scholar 

  14. Chou CK, Bassen H, Osepchuck J, Balzano Q, Peterson R, Meltz M, Cleveland R, Lin JC, and Heynick L (1996): Radio frequency electromagnetic exposure: Tutorial review on experimental dosimetry, Bioelectromagnetics 17, 341–353.

    Google Scholar 

  15. Chou CK, Chen GW, Guy AW, and Luk KH (1984): Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 5: 435–441.

    Article  Google Scholar 

  16. Chou CK, Guy AW, McDougall JA, and Lai H. (1985): Specific absorption rate in rats exposed to 2,450-MHz microwaves under seven exposure conditions, Bioelectromagnetics 6, 341–353.

    Google Scholar 

  17. Cleveland RF and Athey TW (1989): Specific absorption rate (SAR) in models of the human head exposed to UHF portable radios, Bioelectromagnetics 10, 173–186.

    Article  Google Scholar 

  18. D’Andrea JA, Emmerson RY, Bailey CM, Olsen RG, and Gandhi OP (1985): Microwave radiation absorption in the rat: Frequency-dependent SAR distribution in body and tail, Bioelectromagnetics 6: 199–206.

    Google Scholar 

  19. D’Andrea JA, Gandhi OP, and Lords JL (1977): Behavioral and thermal effects of microwave radiation at resonant and nonresonant wavelengths. Radio Sci. 12 (6S): 251–256.

    Article  Google Scholar 

  20. Dimbylow PJ (1996): Development of realistic voxel phantoms for electromagnetic field dosimetry, 1–7, in P. J. Dimbylow (ed.) Voxel Phantom Development, Proceedings of an International Workshop, National Radiological Protection Board, Chilton, Didcot, U.K.

    Google Scholar 

  21. Dimbylow PJ (1997): FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine and Biology, Vol 42, 479–490.

    Article  Google Scholar 

  22. Dimbylow PJ (2000): Electromagnetic field calculations in an anatomically realistic voxel model of the human body, In Klauenberg BJ and Miklavcic D, (eds.) “Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields.”Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 123–131.

    Chapter  Google Scholar 

  23. Dimbylow PJ and Mann SM (1994): SAR Calculations in an Anatomically Based Realistic Model of the Head for Mobile Communication Transceivers at 900 MHz and 1.8 GHz,“ Physics in Medicine and Biology, vol. 39, 1537–1553.

    Google Scholar 

  24. Duck FA (1993): Physical Properties of Tissue — A Comprehensive Reference Book, Academic Press.

    Google Scholar 

  25. Durney CH (1999): 25 years of dosimetry — What now ?, Bioelectromagnetics, Vol. 20, 133–139.

    Google Scholar 

  26. Durney CH, Massoudi H, and Iskander MF (1986): Radiofrequency Radiation Dosimetry Handbook (Fourth Edition), USAFSAM-TR-85–73, USAF School of Aerospace Medicine, Brooks Air Force Base, TX 78235.

    Google Scholar 

  27. Emmerson JA, Bailey RY, Olsen CM, and Gandhi OP (1985): Microwave radiation absorption in the rat: Frequency-dependent SAR distribution in body and tail, Bioelectromagnetics 6, 199–206.

    Google Scholar 

  28. Epstein BR and Foster KR (1983): Anisotropy in Dielectric Properties of Skeletal Muscle, “ Med. Biol. Eng. Comput., vol. 21, 51–55.

    Article  Google Scholar 

  29. Foster KR, Lozano-Nieto A, Riu PJ (1998): Heating of Tissue by Microwaves-A Model Analysis, Bioelectromagnetics 19: 420–428.

    Article  Google Scholar 

  30. Foster KR and Schwan HP (1996): Dielectric Properties of Tissues, In: Polk C, Postow E (eds): Handbook of Biological effects of Electromagnetic Fields, second edition, CRC Press.

    Google Scholar 

  31. Furse CM and Gandhi OP (1998): Calculation of Electric Fields and Currents Induced in a Milli mete r- Resolution Human Model at 60 Hz Using the FDTD Method, Bidelectromagnetics, Vol. 19, 293–299.

    Article  Google Scholar 

  32. Furse CM, Mathur SP, and Gandhi OP (1990): Improvements in the FiniteDifference Time-Domain Method for Calculating the Radar Cross Section of a Perfectly Conducting Target, IEEE Transactions on Microwave Theory and Techniques, Vol. 38, no. 7, 919–927.

    Article  Google Scholar 

  33. Furse CM, Yu SQ, and Gandhi OP (1997): Improvements in the FDTD method for near field bioelectromagnetic simulations, Microwave and Optical Technology letters, Vol. 16, 341–345.

    Google Scholar 

  34. Gabriel C (1996): Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, AL/OE-TR-1996–0037, Armstrong Laboratory, Brooks Air Force Base, TX 78235.

    Google Scholar 

  35. Gabriel C (2000): Dielectric properties of tissues, In Klauenberg BJ and Miklavcic D, (eds.) “Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields.” Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 75–84.

    Chapter  Google Scholar 

  36. Gabriel C, Gabriel S, and Corhout E (1996): The Dielectric Properties of Biological Tissues: Literature Survey, Physics in Medicine and Biology, vol 41, 2231–2249.

    Google Scholar 

  37. Gajsek P (2000): Radiofrequency Measurements and Sources, In Klauenberg BJ and Miklavcic D, (eds.) “Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields.” Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 309–320.

    Chapter  Google Scholar 

  38. Gajsek P, Ziriax JM, Hurt WD, Walters TJ, and Mason PA (in press): Predicted SAR in Sprague-Dawley rat as a function of permittivity values, Bioelectromagnetics.

    Google Scholar 

  39. Gandhi OP (1974): Polarization and frequency effects on whole animal energy absorption of RF energy. Proc. IEEE 62: 1171–1175.

    Article  Google Scholar 

  40. Gandhi OP (1990): Numerical Methods for Specific Absorption rate Calculations,“ Chapter 6 in Biological Effects and Medical Applications of Electromagnetic Energy, O.P. Gandhi Ed., 113–140, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  41. Gandhi OP (1994): Some Numerical Methods for Dosimetry: ELF to microwave frequencies. Radio Science, Vol. 29, 12–19.

    Google Scholar 

  42. Gandhi OP (1995): Some numerical methods for dosimetry: Extremely low frequencies to microwave frequencies, Radio Science 30, 161–177.

    Article  Google Scholar 

  43. Gandhi OP (2000): Numerical and experimental methods for dosimetry of RF radiation — some recent results, In Klauenberg BJ and Miklavcic D, (eds.) “Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields.” Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 112–121.

    Google Scholar 

  44. Gandhi OP and Chen JY (1992): Numerical Dosimetry at Power-Line Frequencies using Anatomically Based Models, Bioelectromagnetics Supplement, 1, 43–60.

    Article  Google Scholar 

  45. Gandhi OP and Chen JY (1995): Electromagnetic Absorption in the Human Head from Experimental 6 GHz Hand-Held Transceivers, IEEE Transactions on Electromagnetic Compatibility, vol. EMC-37, 547–558.

    Google Scholar 

  46. Gandhi OP, Hagmann MJ, and D’Andrea JA (1979): Partbody and multibody effects on absorption of radio frequency electromagnetic energy by animals and by models of man. Radio Sci. 14 (6S): 15–22.

    Article  Google Scholar 

  47. Gandhi OP, Lazzi G, Tinniswood A, and Yu Q, (1999): Comparison of numerical and experimental Methods for determination of SAR and Radiation patterns of Handheld Wireless Telephones, Bioelectromagnetics, No. 20, 93101.

    Google Scholar 

  48. Gao BQ and Gandhi OP (1992): An Expanding-Grid Algorithm for the FiniteDifference Time-Domain Method, IEEE Transactions on Electromagnetic Compatibility, vol. 34, 277–283.

    Article  Google Scholar 

  49. Grant EH, Keefe SE, and Takashima S (1968): The dielectric behaviour of aqueous solutions of bovine serum albumin from radiowave to microwave frequencies, J. Phys. Chem. 72, 4373–4380.

    Google Scholar 

  50. Guy AW (1987): Dosimetry associated with exposure to non-ionizing radiation: very low frequency to microwaves, Health Phys., Vol. 53, No. 6, pp. 569–584

    Article  Google Scholar 

  51. Hagmann MJ, Gandhi OP, and Durney CH (1979): Numerical Calculation of Electromagnetic Energy Deposition for a Realistic Model of Man,“ IEEE Transactions on Microwave Theory and Techniques, vol. MTT-27 (9), 804–809.

    Google Scholar 

  52. Harrington RF (1968): “Field Computation by Moments Method”, The Macmillan Company, New York.

    Google Scholar 

  53. Hochuli C (1981): Procedures for Evaluating Nonperturbing Temperature Probes in Microwave Fields, FDA 81–8143, Food and Drug Administration, Rockville, MD 20857.

    Google Scholar 

  54. Hubbing TH (1991): Survey of Numerical Electromagnetic Modeling Techniques, University of Missouri-Rolla, Report Nr, TR110013.

    Google Scholar 

  55. Hunt EL, Phillips RD (1972): Absolute physical dosimetry for whole animal experiments. In “Joint U.S. Army/Georgia Institute of Technology Microwave Dosimetry Workshop, Digest of Papers.” Walter Reed Army Institute of Research, Washington DC: 74–77.

    Google Scholar 

  56. Hurt WD (1985): Multiterm Debye Dispersion Raleation for permittivity of Muscle, IEEE Trans. Biomedical Eng, Vol. 32, No. 1, 60–64.

    Article  Google Scholar 

  57. Hurt WD (1988): Specific Absorption Rate Measurement Techniques, Proceeding of the Twenty-second Midyear Topical Meeting on Instrumentation, pp. 139–151, Health Physics Society, San Antonio, Texas, December 4–8, 1988.

    Google Scholar 

  58. Hurt WD (1997): Dosimetry of radiofrequency (RF) fields, in K. Hardy, M. Meltz, and R. Glickman (eds.), Non-Ionizing Radiation: An Overview of the Physics and Biology, Health Physics Society 1997 Summer School, Medical Physics Publishing, Madison, Wisconsin.

    Google Scholar 

  59. Hurt WD (2000): Absorption characteristics and measurement concepts, In Klauenberg BJ and Miklavcic D, (eds.) “Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields.” Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 39–52.

    Chapter  Google Scholar 

  60. Hurt WD, Ziriax JM, and Mason PA (2000): Variability in EMF permittivity values: Implications for SAR calculations, IEEE Trans Biomed. Eng., Vol 47, No. 3, 396–401.

    Article  Google Scholar 

  61. Institute of Electrical and Electronics Engineers, Inc. (IEEE) (1992): Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave, IEEE Std C95. 3–1991, Institute of Electrical and Electronics Engineers, Inc., New York.

    Google Scholar 

  62. Institute of Electrical and Electronics Engineers, Inc. (IEEE) (1999): Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Institute of Electrical and Electronics Engineers, New York.

    Google Scholar 

  63. International Commission of Non-ionizing Radiation (ICNIRP) (1998): Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic fields (Up to 300 GHz), Health Phys. 74, 494 — 522.

    Google Scholar 

  64. Johnson CC and Guy AW (1972): Nonionizing electromagnetic wave effects in biological material and systems. Proc. IEEE, 60, 692–718.

    Article  Google Scholar 

  65. Kirschvink JL, Kobayashi-Kirschvink A, and Diaz-Ricci J (1992): Magnetite in the human tissues: a mechanism for the biological effects of weak ELF magnetic fields, Bioelectromagnetics, Suppl. 1, 101–113.

    Google Scholar 

  66. Kotnik T and Miklavcic D (2000): Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields, Bioelectromagnetics, Vol. 21, 385–394.

    Article  Google Scholar 

  67. Kritikos HN and Schwan HP (1972): Hot spots generated in conducting spheres by electromagnetic waves and biological implications, IEEE Trans. Biomedical Eng, 19 (1), 53–58.

    Article  Google Scholar 

  68. Kritikos HN and Schwan HP (1975): The distribution of heating potential inside lossy sphere, IEEE Trans. Biomedical Eng, 22 (6), 457–463.

    Article  Google Scholar 

  69. Kunz KS and Lee KM (1978): A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment, 1. The method and it’s implementation. IEEE Transactions on Electromagnetic Compatibility, Vol. 20, 328.

    Article  Google Scholar 

  70. Kunz KS and Luebbers RJ (1993): The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  71. Kuster N, Balzano Q, and Lin JC (1997): Mobile Communication Safety, First Edition, Chapman & Hall.

    Google Scholar 

  72. Lin JC (2000): Perspectives on guidelines for human exposure to RF radiation, IEEE Antennas and Propagation Magazine, 42 (1), 147–148.

    Article  Google Scholar 

  73. Lin JC and Gandhi OP (1996): Computational methods for predicting field, in C. Polk, an E Postow (eds) Biological Effects of Electromagnetic Fields, 2nd Edition, CRC Press Inc., Boca Raton, FL, pp. 337–402.

    Google Scholar 

  74. Livesay DE and Chen KM (1974): Electromagnetic Fields Induced Inside Arbitrary Shaped Biological Bodies,“ IEEE Transactions on Microwave Theory and Techniques, vol. 22, no. 12, 1273–1280.

    Article  Google Scholar 

  75. Luebbers R, Hunsberger FP, Kunz KS, Sandler RB, and Schneider M (1990): A Frequency-Dependent Finite-Diff erence Time-Domain Formulation for Dispersive Materials,“ IEEE Transactions on Electromagnetic Compatibility, vol. EMC-32, 222–227.

    Google Scholar 

  76. MacNeal BE (1991): MSC/EMAS Modeling Guide, The MacNeal-Schwendler Corporation.

    Google Scholar 

  77. Mason PA, Hurt WD, Walters TJ, D’Andrea JA, Gajsek P, Ryan KL, Nelson PA, and Ziriax JA (2000a): Effects of frequency, permittivity, and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic field exposure, IEEE Microw. Theory & Techn, Vol. 48, No 11, 2050–2057.

    Article  Google Scholar 

  78. Mason PA, Walters TJ, Fanton JW, Erwin DN, Gao JH, Roby JW, Kane JL,. Lott, KA and Blystone RV (1995): Database created from magnetic resonance images of a Sprague-Dawley rat, rhesus monkey, and pigmy goat, Official Publication of the Federation of American Societies for Experimental Biology (FASEB J.), 9. 434–440.

    Google Scholar 

  79. Mason PA, Ziriax JM, Hurt WD, and D’Andrea JA (1999): 3-Dimensional models for EMF dosimetry. In: Electricity and Magnetism in Biology and Medicine edited by F.Bersani, Kluwer Academic/Plenum Publishers, 291–294.

    Google Scholar 

  80. Mason PA, Ziriax JM, Hurt WD, Walters TJ, Ryan KL, Nelson PA, and. D’Andrea JA (2000b): “Recent advances in dosimetry and modeling”, In Klauenberg BJ and Miklavcic D, (eds.): Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 141–155.

    Chapter  Google Scholar 

  81. Mie G (1908): Contributions to the optics of diffusing media. Ann Physik, 25.

    Google Scholar 

  82. Miklavcic D and Gajsek P (1999): Biological effects of electromagnetnic fields, Handbook, University of Ljubljana, (in Slovene language).

    Google Scholar 

  83. Morgan MA (1981): Finite Element Calculation of Microwave Absorption by the Cranial Structures,“ IEEE Transactions on Biomedical Engineering, vol. BME-28, no. 10, 687–695.

    Article  Google Scholar 

  84. Mur G (1981): Absorbing boundary conditions for finite difference approximation of the time-domain electromagnetic field equation, IEEE Trans. Electromagn. Compat., 23, 1073–1077.

    Article  Google Scholar 

  85. National Council on Radiation Protection and Measurements (NCRP) (1993): A Practical Guide to the determination of Human Exposure to Radiofrequency Fields, Report 119.

    Google Scholar 

  86. Ohlsson T and Risman PO (1978): Temperature distribution of microwave heating–spheres in cylinders, J. Microw. Power, 13 (4), 303–310.

    Google Scholar 

  87. Olsen RG (1986): Localized specific absorption rate (SAR) in a full-sized man model near a shipboard monopole antenna: Effects on near-field, reradiating structures and of whole-body resonance, Eighth Annual Meeting—Abstracts of the Bioelectromagnetics Society, 34.

    Google Scholar 

  88. Olsen RG and Griner TA (1989): Outdoor measurements of SAR in a full-size human model exposed to 29.2 MHz near-field irradiation, Bioelectromagnetics 10, 162–171.

    Google Scholar 

  89. Oristaglio M L and Hohmann GW (1984): Diffusion of Electromagnetic Fields into a Two Dimensional Earth: A Finite-Difference Approach,“ Geophysics, 870–894.

    Google Scholar 

  90. Padilla JP and Bixby R (1986): Using Dewar-Flask Calorimetry and Rectal Temperatures to Determine the Specific Absorption Rates of Small Rodents. USAF School of Aerospace Medicine Report, USAFSAM-TP-86–3, Brooks AFB, TX.

    Google Scholar 

  91. Paxinos G and Watson C (1986): The Rat Brain in Stereotaxic Coordinates, 2nd edition, Academic Press, Sydney, Australia.

    Google Scholar 

  92. Phillips RD, Hunt EL, and King N W (1975): Field Measurements of Absorbed Dose and Biologic Dosimetry of Microwaves, Ann NY Acad Sci, vol. 247, 162–171.

    Article  Google Scholar 

  93. Pokovic K, Burkhardt M, Schmid T, and Kuster N (2000): Experimental and numerical near field evaluation of RF transmitters, In Klauenberg BJ and Miklavcic D, (eds.): Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 159–186.

    Chapter  Google Scholar 

  94. Ryan KL, Walters TJ, Tehrany MR, Lovelace, JD, and Jauchem JR (1997): Age does not affect thermal and cardiorespiratory responses to microwave heating in calorically restricted rats. Shock 8 (1): 55–60.

    Article  Google Scholar 

  95. Schmid T, Egger O, and Kuster N. (1996): Automated E-field scanning systems for dosimetric assessments, IEEE Transactions on Microwave Theory and Techniques 44, 105–113.

    Article  Google Scholar 

  96. Schwan HP (1970): Electrical properties of phospholipid vesicles, Biophys. J., 10, 1102–1119.

    Article  Google Scholar 

  97. Schwan HP (1957): Electrical properties of tissues and cells, Advan. Biol. Med. Phys. 5, 147–209.

    Google Scholar 

  98. Schwan HP (1988) Biological effects of on-ionizing radiations: cellular properties and interactions, annals of Biomedical Engineering 16, 245–263.

    Google Scholar 

  99. Sheppard AR (2000): Thermal basis for the averaging volume for RF safety standards, Workshop, RF fields applied in wireless communication — biological effects and safety concerns, Bioelectromagnetic society.

    Google Scholar 

  100. Shlager KL and Schneider JB (1995): A Selective Survey of the Finite-Difference Time-Domain Literature. IEEE Antennas and Propagation Magazine,37:4, 39–56.

    Google Scholar 

  101. Stuchly M A, Kraszewski A, Stuchly SS, Hartsgrove GW, and Spiegel RJ (1987): RF energy deposition in a heterogeneous model of man: Near-field exposures, IEEE Trans. Biomedical Eng, 34, 12.

    Google Scholar 

  102. Stuchly MA and Stuchly SS (1980): Dielectric properties of biological substances — Tabulated, J. Microwave Power 15, 19–26.

    Google Scholar 

  103. Stuchly MA and Stuchly SS (1996): Experimental radiowave and microwave dosimetry, in C. Polk and E. Postow (eds.) Handbook of Biological Effects of Electromagnetic Fields, Second Edition, CRC Press Inc., Boca Raton, FL, 301342.

    Google Scholar 

  104. Stuchly MA and Gandhi OP (2000): Interlaboratory comparison of the numerical dosimetry for human exposure to 60 Hz electric and magnetic fields, Bioelectromagnetics, 21, 167–174.

    Article  Google Scholar 

  105. Stuchly MA, Spiegel RJ, Stuchly S S, and Kraszewski A (1986): Exposure of man in the near field of a resonant dipole: Comparison between theory and measurements, IEEE Transactions on Microwave Theory and Technique 10, 173–186.

    Google Scholar 

  106. Stuchly S (1987): Specific Absorption Rate Distribution in a Heterogeneous Model of the Human Body at Radiofrequencies, Report PB87–201356, Ottawa University, Ontario.

    Google Scholar 

  107. Sullivan DM (1992): Frequency-Dependent FDTD Methods using Z Transformations, IEEE Transactions on Antennas and Propagation, vol. AP-40, 1232–1230.

    Google Scholar 

  108. Taflove A (1995): “Computational Electrodynamics — The Finite-Difference Time-Domain Method”, Artech House, Boston.

    Google Scholar 

  109. Taflove A and Brodwin ME (1975): Computation of the electromagnetic fields and induced temperatures within a model of the microwave irradiated human eye, IEEE Transactions on Microwave Theory and Techniques, MTT-23, 888.

    Google Scholar 

  110. Taflove A and Brodwin ME (1975): Numerical Solutions of Steady-State Electromagnetic Scattering Problems using the Time-Dependent Maxwell’s Equations, IEEE Transactions on Microwave Theory and Techniques, pp. 623–630.

    Google Scholar 

  111. Taflove A and Umashankar KR (1990): The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures, Chapter 8 in Progress in Electromagnetics Research, PIER 2, Michael A. Morgan, Editor, Elsevier Science Publishing Company, New York, 1990.

    Google Scholar 

  112. Taflove A., Umashankar KR, and Jurgens TG (1985): Validation of FDTD Modeling of the Radar Cross Section of Three-Dimensional Structures Spanning up to Nine Wavelengths, IEEE Transactions on Antennas and Propagation, pp. 662–666, June 1985.

    Google Scholar 

  113. Taylor CH, Burl M, and Hand WJ (1997): Experimental verification of numerical predicted electric field distributions produced by a radiofrequency coil, Phhys. Med. Biol. 42, 1395–1402.

    Google Scholar 

  114. Tinniswood AD, Furse CM, and Gandhi OP (1998a): Computations of SAR distributions for two anatomically-based models of the human head using CAD files of commercial telephones and the parallelized FDTD code, IEEE Transaction on Antennas and Propagation 46, 829–833.

    Article  Google Scholar 

  115. Tinniswood AD and Gandhi OP (1999): Head and neck resonance in a rhesus monkey–A comparison with results from a human model, Physics in Medicine and Biology 44, 695–704.

    Article  Google Scholar 

  116. Tinniswood AD, Furse CM, and Gandhi OP (1998b): Power deposition in the head and neck of an anatomically-based human body model for plane wave exposures, Physics in Medicine and Biology 43, 2361–2378.

    Article  Google Scholar 

  117. Umashankar KR and Taflove A (1982): A Novel Method to Analyze Electromagnetic Scattering of Complex Objects, IEEE Transactions on Electromagnetic Compatibility, vol. EMC-24, pp. 397–405.

    Google Scholar 

  118. Walters TJ, Blick DW, Johnson LR, Adair ER, and Foster KR (2000b): Heating and pain sensation produced in human skin by millimeter waves. Health Phys., Vol. 78, No. 3, 259–267.

    Article  Google Scholar 

  119. Walters TJ, Mason PA, Ryan KL, Nelson DA, and Hurt WD (2000a): A comparison of SAR values determined empirically and by FDTD modeling, In Klauenberg BJ and Miklavcic D, (eds.) “Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields.” Kluwer Academic Publishers, B. V. Dordrecht, The Netherlands, 207–216.

    Chapter  Google Scholar 

  120. Walters TJ, Ryan KL, Belcher JC, Doyle JM, Tehrany MR, and Mason PA (1998): Regional brain heating during microwave exposure (2.06 GHz), warm-water immersion, environmental heating and exercise, Bioelectromagnetics 19, 341–353.

    Article  Google Scholar 

  121. Ward TR, Svensgaard DJ, Spiegel RJ, Puckett ET, Long MD, and Kinn JB (1986): Brain temperature measurements in rats: A comparison of microwave and ambient temperature exposure, Bioelectromagnetics 7, 243–258.

    Google Scholar 

  122. World Health Organization (WHO) (1993): Environmental Health Criteria 137, Elektromagnetic fields (300 Hz - 300 GHz ), Geneva.

    Google Scholar 

  123. Yamamoto T and Yamamoto Y (1976): Dielectric constant and resistivity of epidermal stratum correum, Med. Biolog. Engin. 14, 494–499.

    Google Scholar 

  124. Yamashita Y and Takahashi T (1984): Use of the Finite Element Method to Determine Epicardial for Body Surface Potentials Under a Realistic Torso Model, IEEE Transactions on Biomedical Engineering, vol. BME-28, no. 9, 611–621.

    Article  Google Scholar 

  125. Yee KS (1966): Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, Vol. 14, 302.

    MATH  Google Scholar 

  126. Ziriax JH, Jennings JK, D’Andrea JA, Mason PA, Halftel M, and Hurt WD (2000): Using the visible human data set for FDTD calculations, In: Millenium Workshop on Biological Effects of EMF, Proceedings (Eds: Kostarakis, Stavroulakis ), 62–72.

    Google Scholar 

  127. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi GR, and Hoffer PH (1994): Computerized three-dimensional segmented human anatomy, Med. Phys. Biol., 21, 299–302.

    Google Scholar 

  128. A. R. Shapiro, R. F. Lutomirski, and H. T. Yura, “Induced fields and heating within a cranial structure irradiated by an electromagnetic plane wave,” IEEE Trans. Microwave Theory Tech., vol. 19, pp. 187–196, Feb. 1971.

    Article  Google Scholar 

  129. C. M. Weil, “Absorption characteristics of multilayered sphere models exposed to UHF/Microwave radiation,” IEEE Trans. Biomed. Eng., vol. BME-22, pp. 468–476, Nov. 1975.

    Google Scholar 

  130. H. N. Kritikos and H. Schwan, “Formation of hot spots in multilayered spheres,” IEEE Trans. Biomed. Eng., vol. BME-22, pp. 168–172, Mar. 1976.

    Google Scholar 

  131. H. Massoudi, C. H. Durney, and C. C. Johnson, “Long-wavelength electromagnetic power absorption in ellipsoidal models of man and animals,” IEEE Trans. Microwave Theory Tech., vol. 25, pp. 47–52, 1977.

    Article  Google Scholar 

  132. A. Hizal and Y. K. Baykal, “Heat potential distribution in an inhomogeneous spherical model of a cranial structure exposed to microwaves due to loop or dipole antennas,” IEEE Trans. Microwave Theory Tech., vol. 26, pp. 607–612, Aug. 1978.

    Article  Google Scholar 

  133. C. H. Durney, M. F. Iskander, H. Massoudi, and C. Johnson, “An empirical formula for broad-band SAR calculations of prolate spheroidal models of humans and animals,” IEEE Trans. Microwave Theory Tech., vol. 27, no. 8, pp. 758–763, 1979.

    Article  Google Scholar 

  134. H. Massoudi, C. H. Durney, P. W. Barber, and M. F. Iskander, “Electromagnetic absorption in multilayered cylindrical models of man,” IEEE Trans. Microwave Theory Tech., vol. 27, no. 10, pp. 825–830, 1979.

    Article  MathSciNet  Google Scholar 

  135. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, May. 1966.

    MATH  Google Scholar 

  136. A. Taflove, Advances in Computational Electrodynamics: The Finite Difference Time Domain Method. Artech House, 1998.

    Google Scholar 

  137. J. Jin, The Finite Element Method in Electromagnetics. John Wiley & Sons, Inc, 1993.

    Google Scholar 

  138. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers. Cambridge: Cambridge University Press, 3rd ed., 1996.

    Google Scholar 

  139. J. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits and Scattering Applications. IEEE Press, 1998.

    Google Scholar 

  140. R. F. Harrington, Field Computations by Method of Moments. New York: Macmillan, 1968.

    Google Scholar 

  141. J. Wang, Generalized Moment Methods in Electromagnetics. Wiley, 1991.

    Google Scholar 

  142. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods in Electromagnetics. New York: IEEE Press, 1998.

    Google Scholar 

  143. R. Holland, L. Simpson, and K. S. Kunz, “Finite-di.erence analysis of EMP coupling to lossy dielectric structures,” IEEE Trans. Electromag. Compat., vol. 22, pp. 203–209, Aug. 1980.

    Article  Google Scholar 

  144. D. T. Borup, D. M. Sullivan, and O. Gandhi, “Comparison of the FFT conjugate gradient method and the finite-di.erence time-domain method for the 2D absorption problem,” IEEE Trans. Microwave Theory Tech., vol. 35, no. 4, pp. 383–385, 1987.

    Article  Google Scholar 

  145. S. Neuder, “A finite element technique for calculating induced internal fields and power deposition in biological media of complex irregular geometry exposed to planewave electromagnetic radiation,” in Proc of Symposium on Biological E.ects and Measurements of Radio Frequency/Micromaves, (Rockville, MD, USA), pp. 170–190, Feb 1977.

    Google Scholar 

  146. M. A. Morgan, “Finite element calculation of microwave absorption by the cranial structure,” IEEE Trans. Biomed. Eng., vol. BME-28, no. 10, pp. 687–695, 1981.

    Article  Google Scholar 

  147. M. J. Hagmann, O. P. Gandhi, and C. H. Durney, “Numerical calculation of electromagnetic energy deposition for a realistic model of man,” IEEE Trans. Microwave Theory Tech., vol. 27, no. 9, pp. 804–809, 1979.

    Article  Google Scholar 

  148. J. Y. Chen and O. P. Gandhi, “RF currents induced in an anatomically-based model of a human for plane-wave exposures 20–100 MHz,” Health Physics Society, vol. 57, pp. 89–98, 1989.

    Article  Google Scholar 

  149. D. R. Lynch, K. Paulsen, and J. Strohbehn, “Finite Element Solution of Maxwell’s Equations for Hyperthermia Treatment Planning,” Journal of Computational Physics, vol. 58, pp. 246–269, 1985.

    Article  MATH  Google Scholar 

  150. C. E. Miller and C. S. Henriquez, “Finite element analysis of bioelectric phenomenon,” Crit. Rev. Biomed. Eng., vol. 18, p. 181, 1990.

    Google Scholar 

  151. O. P. Gandhi, Y. G. Gu, J. Y. Chen, and H. I. Bassen, “Specific absorption rates and induced current distributions in an anatomically based human model for plane-wave exposures,” Health Physics Society, vol. 67, no. 3, pp. 281–290, 1992.

    Article  Google Scholar 

  152. O. Gandhi, J. Chen, and C. Furse, “A frequency-dependent FDTD method for induced-current calculations for a heterogeneous model of the human body,” IEEE MTTS Digest, pp. 1283–1286, 1992.

    Google Scholar 

  153. H. Bruns, H. Singer, and T. Mader, “Field distributions of a hand-held transmitter due to the influence of the human body,” in Proceedings of the 9th Symposium on electromagnetic compatibility, (Zurich, Switzerland), pp. 10–14, 1993.

    Google Scholar 

  154. W. Renhart, C. Magele, and N. Modl, “Modelling and calculation of influences of RF-fields on the human body using the finite element methods,” IEEE Trans. on Magnetics, vol. 30, pp. 3092–3095, Sep. 1994.

    Article  Google Scholar 

  155. F. Meyer and D. Davidson, “Approximate computer modelling of a manpack antenna using the two dimensional finite element/boundary element method,” SAIEE Transactions, vol. 85, pp. 8–17, Mar. 1994.

    Google Scholar 

  156. V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, and N. Kuster, “The dependence of EM energy absorption upon human head modeling at 900 MHz,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1865–1873, Oct. 1996.

    Article  Google Scholar 

  157. K. Meier, V. Hombach, R. K“astle, R. Y. S. Tay, and N. Kuster, ”The dependence of electromagnetic energy absorption upon human-head modeling at 1800 MHz,“ IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2058–2062, Nov. 1997.

    Google Scholar 

  158. M. Okoniewski and M. Stuchly, “A study of the handset antenna and human body interaction,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1855–1864, Oct. 1996.

    Article  Google Scholar 

  159. S. Watanabe, M. Taki, T. Nojima, and O. Fujiwara, “Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio,” IEEE Trans. Antennas Propagat., vol. 44, pp. 1874–1883, Oct. 1996.

    Google Scholar 

  160. G. Lazzi and O. P. Gandhi, “Realistically tilted and truncated anatomically based models of the human head for dosimetry of mobile telephones,” IEEE Trans. Electromag. Compat., vol. 39, pp. 55–61, Feb. 1997.

    Article  Google Scholar 

  161. J. Vaul and P. Excel!, “Numerical Realisation of Realistic Articulated Hand Model for Mobile Telephone Dosimetry Studies,” in Proceedings of the Twenty Second Annual Meeting of the Bioelectromagnetic Society, (Munich, Germany), p. 141, June 2000.

    Google Scholar 

  162. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2074–2082, Dec. 1998.

    Google Scholar 

  163. P. Bernardi, M. Cavangnaro, S. Pisa, and E. Piuzzi, “Human Exposure to Radio Base-Station Antennas in Urban Environment,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1996–2002, Nov. 2000.

    Google Scholar 

  164. M. Burkhardt and N. Kuster, “Appropriate Modeling of the Ear for Compliance Testing of Handheld MTE with SAR Safety Limits at 900/1800 MHz,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1927–1934, Nov. 2000.

    Article  Google Scholar 

  165. T. Elbert and V. Hansen, “Calculation of unbounded field problems in free space by a 3D FEM/BEM-hybrid approach,” Journal of Electromagnetic Waves and Applications, vol. 10, no. 1, pp. 61–78, 1996.

    Article  Google Scholar 

  166. F. Meyer, K. Palmer, and U. Jakobus, “Investigation into the accuracy, efficiency and applicability of the method of moments as numerical dosimetry tool for the head and hand of a mobile phone user,” Applied Computational Electromagnetics Society Journal: Special Issue on Bioelectromagnetic Computations, accepted for publication, July 2001.

    Google Scholar 

  167. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics. Artech House Books, 1990.

    Google Scholar 

  168. N. Kuster, “Multiple multipole method for simulating EM problems involving biological bodies,” IEEE Trans. Biomed. Eng., vol. 40, pp. 611–620, July 1993.

    Article  Google Scholar 

  169. H.-O. Ruoss, U. Jakobus, and F. M. Landstorfer, “Iterative coupling of MoM and MMP for the analysis of metallic structures radiating in the presence of dielectric bodies,” in Conference Proceedings of the 14 th Annual Review of Progress in Applied Computational Electromagnetics, pp. 936–943, Mar. 1998.

    Google Scholar 

  170. U. Jakobus, H.-O. Ruoss, L. Geisbusch, and F. M. Landstorfer, “Hybridisation of MoM and GMT for the numerical analysis of electromagnetic sources radiating in the vicinity of persons with implanted cardiac pace-makers,” in Proceedings of IEEE AFRICON’99, 5th Africon Conference, Sept. 1999.

    Google Scholar 

  171. N. C. Skaropoulos, M. P. loannidou, and D. P. Chrissoulidis, “Induced EM field in a layered eccentric sphere model of the head: plane-wave and localized source exposure,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1963–1973, Oct. 1996.

    Article  Google Scholar 

  172. K. W. Kim and Y. Rahmat-Samii, “Personal communication antenna characterization in the presence of a human operator: An engineering approach based on a multi-layered lossy spherical head,” Tech. Rep. UCLA Report NO. ENG-97–175, UCLA School of Engineering & Applied Sciences, 1997.

    Google Scholar 

  173. H.-O. Ruoss and F. M. Landstorfer, “Electromagnetic dyadic Green’s function for a layered homogeneous lossy dielectric sphere as head model for numerical EMC investigation,” Electronics Letters, vol. 32, pp. 1935–1937, 1996.

    Article  Google Scholar 

  174. U. Jakobus and F. M. Landstorfer, “Parallel implementation of the hybrid MoM/Green’s function technique on a cluster of workstations,” in Proceedings of ICAP’97, IEE 10th International Conference on Antennas and Propagation, pp. 182–185, Apr. 1997.

    Google Scholar 

  175. C. H. Durney, Radiofrequency radiation dosimetry handbook: Fourth Edition. Brooks Air Force Base: USAFSAM-TR-85–73, 1986.

    Google Scholar 

  176. N. Kuster, Q.Balzano, and J. Lin, Mobile Communication Safety. Chapman & Hall, 1997.

    Google Scholar 

  177. Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300GHz),“ Tech. Rep. N/A, ICNIRP (International Commission on Non-Ionizing Radiation Protection), Apr. 1998.

    Google Scholar 

  178. M. A. Stuchly and S. S. Stuchly, “Dielectric properties of biological substances–tabulated,” Journal of Microwave Power, vol. 15, pp. 19–26, 1980.

    Google Scholar 

  179. G. Hartsgrove, A. Kraszewski, and A. Surowiec, “Simulated biological materials for electromagnetic radiation absorption studies,” Bioelectromagnetics, vol. 8, pp. 29–36, 1987.

    Article  Google Scholar 

  180. K. Foster, The Biomedical Engineering Handbook. CRC Press, Inc., 1995.

    Google Scholar 

  181. C. Gabriel and S. Gabriel, “Compilation of the dielectric properties of body tissues at RF and microwave frequencies,” Tech. Rep. Tech. Rep. AL/OE-TM-1996–0037, Brooks Air Force Base, TX, USA, 1996.

    Google Scholar 

  182. S. Gabriel, R. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissue,” Phys. Med. Biol., vol. 41, pp. 2271–2293, 1996.

    Article  Google Scholar 

  183. Radio Frequency Radiation Branch,“ Tech. Rep. N/A, Brooks Air Force Base, TX, USA, http://www.brooks.af.mil/AFRL/HED/hedr/dosimetry.html.

    Google Scholar 

  184. A. Drossos, V. Santomaa, and N. Kuster, “The Dependence of Electromagnetic Energy Absorption Upon Human Head Tissue Composition in the Frequency Range of 300–3000MHz,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1988–1995, Nov. 2000.

    Article  Google Scholar 

  185. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic field, 3 kHz to 300 GHz,“ Tech. Rep. IEEE C95.1–1999, IEEE, 1999.

    Google Scholar 

  186. Q. Balzano, O. Garay, and T. J. Manning, “Electromagnetic energy exposure of simulated users of portable cellular telephones,” IEEE Trans. Veh. Technol., vol. 44, pp. 390–403, Aug. 1995.

    Article  Google Scholar 

  187. K. Caputa, M. Okoniewski, and M. Stuchly, “An Algorithm for Computations of the Power Deposition in Human Tissue,” IEEE Antennas and Propagation Magazine, vol. 41, pp. 102–107, Aug. 1999.

    Article  Google Scholar 

  188. B. Enguist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp, vol. 31, pp. 629–651, Jul. 1977.

    Article  MathSciNet  Google Scholar 

  189. G. Mur, “Absorbing boundary conditions for the finite-di.erence approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromag. Compat., vol. EMC-23, pp. 377–382, Nov. 1981.

    Google Scholar 

  190. R. Higdon, “Absorbing boundary conditions for di.erence approximations to the multi-dimensional wave equations,” Math. Comp, vol. 47, pp. 437–459, 1986.

    MathSciNet  MATH  Google Scholar 

  191. J. B’erenger, “Improved PML for the FDTD solution of wave-structure interaction problems,” IEEE Trans. Antennas Propagat., vol. 45, pp. 466–473, Mar 1997.

    Article  Google Scholar 

  192. W. Chew and J. Jin, “Perfectly matched layers in the discretized space: an analysis and optimization,” Electromagnetics, vol. 16, pp. 325–340, 1996.

    Article  Google Scholar 

  193. J. de Moerloose and M. A. Stuchly, “Behaviour of Berenger’s ABC for evanescent waves,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 344–346, 1995.

    Article  Google Scholar 

  194. K. S. Kunz and R. J. Luebbers, The Finite Di.erence Time Domain Method for Electromagnetics. CRC Press, 1993.

    Google Scholar 

  195. M. A. Jensen and Y. Rahmat-Samii, “Performance analysis of antennas for handheld transceivers using FDTD,” IEEE Trans. Antennas Propagat., vol. 42, pp. 1106–1113, Aug. 1994.

    Google Scholar 

  196. G. Lazzi and O. P. Gandhi, “On modeling and personal dosimetry of cellular telephone helical antennas with the FDTD code,” IEEE Trans. Antennas Propagat., vol. 46, pp. 525–529, Apr. 1998.

    Article  Google Scholar 

  197. M. Rahman, M. Stuchly, and M. Okoniewski, “Dual-band strip-sleeve monopole for handheld telephones,” Microwave and Optical Technology Letters, vol. 21, pp. 7982, Apr. 1999.

    Article  Google Scholar 

  198. S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A subgridding algorithm for the time domain finite-difference method to solve Maxwell’s equations,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 471–479, Mar.1991.

    Article  Google Scholar 

  199. D. Schimizu, M. Okoniewski, and M. A. Stuchly, “An E.cient Sub-gridding Algorithm for FDTD,” in Conference Proceedings of ACES95, pp. 762–766, Mar. 1995.

    Google Scholar 

  200. IEEE Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body due to Wireless Communications Devices,“ Tech. Rep. IEEE P1529/D0.0, IEEE SCC34/SC-2, Apr 2001.

    Google Scholar 

  201. M. Okoniewski, Totem User’s Notes. University of Victoria, Victoria, Canada, October 1999.

    Google Scholar 

  202. G. Lazzi, S. S. Pattnaik, and O. P. Gandhi, “Experimental and FDTD-computed radiation patterns of cellular telephones held in slanted operational conditions,” IEEE Trans. Electromag. Compat., vol. 41, pp. 141–144, May. 1999.

    Article  Google Scholar 

  203. J. Cooper and V. Hombach, “The Specific Absorption Rate in a Spherical Head Model from a Dipole with Metallic Walls Nearby,” IEEE Trans. Electromag. Compat., vol. 40, pp. 377–382, Nov. 1998.

    Article  Google Scholar 

  204. F. Schonborn, M. Burkhardt, and N. Kuster, “Di.erences in energy absorption between heads of adults and children in the near field of sources,” Health Physics Society, vol. 74, pp. 160–168, Feb. 1998.

    Article  Google Scholar 

  205. C. M. Furse and O. P. Gandhi, “A memory e.cient method of calculating specific absorption rate in CW FDTD simulations,” IEEE Trans. Biomed. Eng., vol. 43, pp. 558–560, May 1996.

    Google Scholar 

  206. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. R. Gindi, and P. H. Ho.er, “Computerized three-dimensional segmented human anatomy,” Med. Phys. Biol., vol. 21, pp. 299–302, 1994.

    Google Scholar 

  207. The Visible Human Project,“ Tech. Rep. N/A, U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD, http:I/www.nlm.nih.gov/research/visible/qettinq data. html.

    Google Scholar 

  208. D. E. Livesay and K.-M. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Transactions on Microwave Theory and Techniques, vol. 22, pp. 1273–1280, Dec. 1974.

    Article  Google Scholar 

  209. K. Karimullah, K. M. Chen, and D. P. Nyquist, “Electromagnetic coupling between a thin—wire antenna and a neighboring biological body: Theory and experiment,” IEEE Transactions on Microwave Theory and Techniques, vol. 28, pp. 1218–1225, Nov. 1980.

    Google Scholar 

  210. H. Massoudi, C. H. Durney, and M. F. Iskander, “Limitations of the cubical block model of man in calculating SAR distributions,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, pp. 746–752, Aug. 1984.

    Article  Google Scholar 

  211. D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Transactions on Antennas and Propagation, vol. 32, pp. 77–85, Jan. 1984.

    Article  Google Scholar 

  212. R. D. Graglia, “The use of parametric elements in the moment method solution of static and dynamic volume integral equations,” IEEE Transactions on Antennas and Propagation, vol. 36, pp. 636–646, May 1988.

    Article  Google Scholar 

  213. T. K. Sarkar and E. Arvas, “Scattering cross section of composite conducting and lossy dielectric bodies,” Proceedings of the IEEE, vol. 77, pp. 788–795, May 1989.

    Article  Google Scholar 

  214. J. Nadobny, P. Wust, M. Seebass, P. Deuflhard, and R. Felix, “A volume—surface integral equation method for solving Maxwell’s equations in electrically inhomogeneous media using tetrahedral grids,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 543–554, Apr. 1996.

    Article  Google Scholar 

  215. H.-R. Chuang, “Numerical computation of fat layer effects on microwave near—field radiation to the abdomen of a full—scale human body model,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, pp. 118–125, Jan. 1997.

    Article  Google Scholar 

  216. W.-T. Chen and H.-R. Chuang, “Numerical computation of human interaction with arbitrarily oriented superquadratic loop antennas in personal communications,” IEEE Transactions on Antennas and Propagation, vol. 46, pp. 821–828, June 1998.

    Article  Google Scholar 

  217. S. Gutschling and T. Weiland, “Detailed SAR distribution in high resolution human head models,” in 11`“ International Zurich Symposium on Electromagnetic Compatibility, pp. 291–296, Mar. 1995.

    Google Scholar 

  218. J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” AEUlnternational Journal of Electronics and Communications, vol. 33, no. 2, pp. 71–80, 1979.

    Google Scholar 

  219. A. A. Kishk and L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Transactions on Antennas and Propagation, vol. 34, pp. 666–673, May 1986.

    Article  Google Scholar 

  220. K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three—dimensional homogeneous lossy dielectric objects,” IEEE Transactions on Antennas and Propagation, vol. 34, pp. 758–766, June 1986.

    Article  Google Scholar 

  221. S. M. Rao, T. K. Sarkar, P. Midya, and A. R. Djordevic, “Electromagnetic radiation and scattering from finite conducting and dielectric structures: Surface/surface formulation,” IEEE Transactions on Antennas and Propagation, vol. 39, pp. 1034–1037, July 1991.

    Article  Google Scholar 

  222. E. Arvas, A. Rahhal-Arabi, A. Sadigh, and S. M. Rao, “Scattering from multiple conducting and dielectric bodies of arbitrary shape,” IEEE Antennas and Propagation Magazine, vol. 33, pp. 29–36, Apr. 1991.

    Article  Google Scholar 

  223. B. M. Kolundizija and B. D. Popovic, “Entire—domain Galerkin method for analysis of metallic antennas and scatterers,” IEE Proceedings H: Microwaves, Antennas and Propagation, vol. 140, pp. 1–10, Feb. 1993.

    Article  Google Scholar 

  224. P. M. Goggans, A. A. Kishk, and A. W. Glisson, “Electromagnetic scattering from objects composed of multiple homogeneous regions using a region—by—region solution,” IEEE Transactions on Antennas and Propagation, vol. 42, pp. 865–871, June 1994.

    Article  Google Scholar 

  225. S. M. Rao and D. R. Wilton, “Transient scattering by conducting surfaces of arbitrary shape,” IEEE Transactions on Antennas and Propagation, vol. 39, pp. 56–61, Jan. 1991.

    Article  Google Scholar 

  226. R. G. Martin, A. Salinas, and A. R. Bretones, “Time—domain integral equation methods for transient analysis,” IEEE Antennas and Propagation Magazine, vol. 34, pp. 15–23, June 1992.

    Article  Google Scholar 

  227. M. J. Lesha and F. J. Paoloni, “Transient scattering from arbitrary conducting surfaces by iterative solution of the electric field integral equation,” Journal of Electromagnetic Waves and Applications, vol. 10, pp. 1139–1167, 1996.

    Article  Google Scholar 

  228. M. J. Bluck and S. P. Walker, “Time—domain BIE analysis of large three—dimensional electromagnetic scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 45, pp. 894–901, May 1997.

    Article  Google Scholar 

  229. M. D. Pocock, M. J. Bluck, and S. P. Walker, “Electromagnetic scattering from 3—D curved dielectric bodies using time—domain integral equations,” IEEE Transactions on Antennas and Propagation, vol. 46, pp. 1212–1219, Aug. 1998.

    Article  Google Scholar 

  230. C. A. Balanis, Advanced Engineering Electromagnetics. New York: John Wiley & Sons, 1989.

    Google Scholar 

  231. R. F. Harrington, Time Harmonic Electromagnetic Fields. New York: McGraw Hill, 1961.

    Google Scholar 

  232. E. Alanen, “Pyramidal and entire domain basis functions in the method of moments,” Journal of Electromagnetic Waves and Applications, vol. 5, no. 3, pp. 315329, 1991.

    Google Scholar 

  233. B. M. Notarois and B. D. Popovi“c. Popovi”c, “General entire—domain Galerkin method for analysis of wire antennasin the presence of dielectric bodies,” IEE Proceedings H: Microwaves, Antennas and Propagation, vol. 145, pp. 13–18, Feb. 1998.

    Google Scholar 

  234. K. K. Mei, “On the integral equations of thin wire antennas,” IEEE Transactions on Antennas and Propagation, vol. 13, pp. 374–378, May 1965.

    Article  Google Scholar 

  235. C. M. Butler, “Evaluation of potential integral at singularity of exact kernel in thin—wire calculations,” IEEE Transactions on Antennas and Propagation, vol. 23, pp. 293–295, Mar. 1974.

    Article  Google Scholar 

  236. W.-X.Wang, “The exact kernel for cylindrical antenna,” IEEE Transactions on Antennas and Propagation, vol. 39, pp. 434–435, Apr. 1991.

    Article  Google Scholar 

  237. D. H. Werner, “A method of moments approach for the e.cient and accurate modeling of moderately thick cylindrical wire antennas,” IEEE Transactions on Antennas and Propagation, vol. 46, pp. 373–382, Mar. 1998.

    Article  Google Scholar 

  238. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems. Englewood Cliffs: Prentice—Hall, 1968.

    Google Scholar 

  239. A. A. Kishk and L. Shafai, “On the accuracy limits of different integral—equation formulations for numerical solution of dielectric bodies of revolution,” Canadian Journal of Physics, vol. 63, pp. 1532–1539, 1984.

    Article  Google Scholar 

  240. A. J. Poggio and E. K. Miller, “Integral equation solutions of three—dimensional scattering problems,” in Computer Techniques for Electromagnetics (R. Mittra, ed.), ch. 4, pp. 159–264, Oxford: Pergamon Press, 1973.

    Google Scholar 

  241. U. Jakobus, “Comparison of different techniques for the treatment of lossy dielectric/magnetic bodies within the method of moments formulation,” AEU International Journal of Electronics and Communications, vol. 54, no. 3, pp. 163–173, 2000.

    Google Scholar 

  242. X. Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined—field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Transactions on Antennas and Propagation, vol. 46, pp. 1718–1726, Nov. 1998.

    Article  Google Scholar 

  243. J. M. Putnam and L. N. Medgyesi-Mitschang, “Combined field integral equation formulation for inhomogenous two— and three—dimensional bodies: The junction problem,” IEEE Transactions on Antennas and Propagation, vol. 39, pp. 667–672, 1991.

    Article  Google Scholar 

  244. B. M. Kolundzija, “Electromagnetic modeling of composite metallic and dielectric structures,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1021–1032, July 1999.

    Article  Google Scholar 

  245. S. M. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. AP-30, pp. 409–418, May 1982.

    Google Scholar 

  246. K. R. Aberegg, A. Taguchi, and A. F. Peterson, “Application of higher—order vector basis functions to surface integral equation formulations,” Radio Science, vol. 31, pp. 1207–1213, Sept. 1996.

    Article  Google Scholar 

  247. R. D. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order interpolatory vector bases for computational electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 45, pp. 329–342, Mar. 1997.

    Article  Google Scholar 

  248. D. Zheng and K. A. Michalski, “Analysis of coaxially fed microstrip antennas of arbitrary shape with thick substrates,” Journal of Electromagnetic Waves and Applications, vol. 5, no. 12, pp. 1303–1327, 1991.

    Article  Google Scholar 

  249. D. R. Wilton and S. U. Hwu, “JUNCTION: a computer code for the computation of radiation and scattering by arbitrary conducting wire/surface configurations,” in Proceedings of the 5th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, pp. 43–51, ACES, Mar. 1989.

    Google Scholar 

  250. U. Jakobus, “Parallel computation of the electromagnetic field of hand—held mobile telephones radiating close to the human head,” in Parallel Computing: Fundamentals, Applications and New Directions (E. H. D’Hollander, G. R. Joubert, F. J. Peters, and U. Trottenberg, eds.), vol. 12 of Advances in ParallelComputing, pp. 163170, Amsterdam: Elsevier Science, 1998.

    Google Scholar 

  251. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive integral method for solving large—scale electromagnetic scattering and radiation problems,” Radio Science, vol. 31, pp. 1225–1251, Sept. 1996.

    Article  Google Scholar 

  252. W. C. Chew, J.-M. Jin, C.-C. Lu, E. Michielssen, and J. M. Song, “Fast solution methods in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 45, pp. 533–543, Mar. 1997.

    Article  Google Scholar 

  253. R. Coifman, V. Rokhlin, and S.Wandzura, “The fast multipole method for the wave equation: A pedestrian prescription,” IEEE Antennas and Propagation Magazine, vol. 35, pp. 7–12, June 1993.

    Article  MathSciNet  Google Scholar 

  254. B. Reddy, Functional Analysis and Boundary-value Problems: an Introductory Treatment. Longman Scientific & Technical, 1986.

    MATH  Google Scholar 

  255. F. J. C. Meyer, “Finite element modelling of a man-pack antenna near a human being,” Tech. Rep. 92/3–6, Institute for Electronics, University of Stellenbosch, February 1993.

    Google Scholar 

  256. J. L. Volakis, T. “ Ozdemir, and J. Gong, ”Hybrid finite-element methodologies for antennas and scattering,“ IEEE Trans. Antennas Propagat., vol. 45, pp. 493–507, Mar 1997.

    Article  Google Scholar 

  257. A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equations,” Comm. Pure App!. Math, vol. 33, pp. 707–725, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  258. J. S. Savage and A. F. Peterson, “Higher-order vector finite elements for tetrahedral cells,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 874–879, June 1996.

    Article  Google Scholar 

  259. M. Muller, F. Sachse, and C. Meyer-Waarden, “Creation of Finite Element Models of Human Body based upon Tissue Classified Voxel Representations,” tech. rep., Institute of Biomedical Engineering,University of Karlsruhe,Germany, http://www.nlm.nih.gov/research/visible/vhp conf/mueller/MeshGeneration.

    Google Scholar 

  260. C. K. Chou, H. Bassen, J. Osepchuk, Q. Balzano, R. Petersen, M. Meltz, R. Cleveland, J. C. Lin, and L. Heynick, “Radio frequency electromagnetic exposure: Tutorial review on experimental dosimetry,” Bioelectromagnetics, vol. 17, pp. 195208, 1996.

    Google Scholar 

  261. N. Kuster, Q. Balzano, and J. C. Lin, Mobile Communications Safety, Chapman & Hall, London, 1997.

    Google Scholar 

  262. N. Kuster, “Multiple multipole method for simulating EM problems involving biological bodies,” IEEE Trans. Biomed. Eng., vol. 40, pp. 611–620, 1993.

    Article  Google Scholar 

  263. H.-R. Chuang, “Human operator coupling effects on radiation characteristics of a portable communications dipole antenna,” IEEE Trans. Antennas Propagat., vol. 42, pp. 556–560, 1994.

    Article  Google Scholar 

  264. N. C. Skaropoulos, M. P. loannidou, and D. P. Chrissoulidis, “Induced EM field in a layered eccentric spheres model of the head: Plane-wave and localized source exposure,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1963–1973, 1996.

    Article  Google Scholar 

  265. K. S. Nikita, G. S. Stamatakos, N. Uzunoglu, and A. Karafotias, “Analysis of the interaction between a layered spherical human head model and a finite-length dipole,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2003–2013, 2000.

    Article  Google Scholar 

  266. M. A. Mangoud, R. A. Abd-Alhameed, and P. S. Excell, “Simulation of human interaction with mobile telephones using hybrid techniques over coupled domains,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2014–2021, 2000.

    Article  Google Scholar 

  267. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. Boca Raton, FL: CRC Press, 1993.

    Google Scholar 

  268. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 1995.

    MATH  Google Scholar 

  269. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 1998.

    MATH  Google Scholar 

  270. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, 1966.

    MATH  Google Scholar 

  271. G. Mur, “Absorbing boundary conditions for the numerical simulation of waves,” IEEE Trans. Electromagn. Compat., vol. 23, pp. 377–382, 1981.

    Article  Google Scholar 

  272. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys., vol. 114, pp. 185–200, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  273. S. Berntsen and S. N. Hornsleth, “Retarded time absorbing boundary conditions,” IEEE Trans. Antennas Propagat., vol. 42, pp. 1059–1064, 1994.

    Article  Google Scholar 

  274. J. Toftgârd, S. N. Hornsleth, and J. B. Andersen, “Effects on portable antennas of the presence of a person,” IEEE Trans. Antennas Propagat., vol. 41, pp. 739–746, 1993.

    Article  Google Scholar 

  275. K. S. Nikita, M. Cavagnaro, P. Bernardi, N. K. Uzunoglu, S. Pisa, E. Piuzzi, J. N. Sahalos, G. I. Krikelas, J. A. Vaul, P. S. Excell, G. Cerri, S. Chiarandini, R. De Leo, and P. Russo, “A study of uncertainties in modeling antenna performance and power absorption in the head of a cellular phone user,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2676–2685, 2000.

    Article  Google Scholar 

  276. P. Bernardi, M. Cavagnaro, and S. Pisa, “Evaluation of the SAR distribution in the human head for cellular phones used in a partially closed environment,” IEEE Trans. Electromagn. Compat., pp. 357–366, 1996.

    Google Scholar 

  277. M. Okoniewski and M. A. Stuchly, “A study of the handset antenna and human body interaction,” IEEE Trans. Microwave Theory Tech.,vol. 44, pp. 18551864, 1996.

    Google Scholar 

  278. S. Watanabe, M. Taki, T. Nojima, and O. Fujiwara, “Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a handheld portable radio,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1874–1883, 1996.

    Google Scholar 

  279. O. P. Gandhi, G. Lazzi, and C. M. Furse, “Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900MHz,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1884–1897, 1996.

    Article  Google Scholar 

  280. A. D. Tinniswood, C. M. Furse, and O. P. Gandhi, “Computations of SAR distributions for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code,” IEEE Trans. Antennas Propagat., vol. 46, pp. 829–833, 1998.

    Article  Google Scholar 

  281. N. Kuster and Q. Balzano, “Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz,” IEEE Trans. Veh. Technol., vol. 41, pp. 17–23, 1992.

    Article  Google Scholar 

  282. G. Lazzi and O. P. Gandhi, “On modeling and personal dosimetry of cellular telephone helical antennas with the FDTD code,” IEEE Trans. Antennas Propagat., vol. 46, pp. 525–530, 1998.

    Article  Google Scholar 

  283. M. A. Jensen and Y. Rahmat-Samii, “EM interaction of handset antennas and a human in personal communications,” Proc. IEEE, vol. 83, pp. 7–17, 1995.

    Article  Google Scholar 

  284. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature increases in the head of a cellular-phone user,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1118–1126, 2000.

    Article  Google Scholar 

  285. A. Schiavoni, P. Bertotto, G. Richiardi, and P. Bielli, “SAR generated by commercial cellular phones-Phone modeling, head modeling, and measurements,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2064–2071, 2000.

    Article  Google Scholar 

  286. P. J. Dimbylow and S. M. Mann, “SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900MHz and 1.8GHz,” Phys. Med. Biol., vol. 39, pp. 1537–1553, 1994.

    Article  Google Scholar 

  287. M. Burkhardt and N. Kuster, “Appropriate modeling of the ear for compliance testing of handheld MTE with SAR safety limits at 900/1800MHz,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1927–1934, 2000.

    Google Scholar 

  288. P. 011ey and P.S. Excell, “Classification of a high-resolution voxel image of a human head”, Proc. International Workshop “Voxel Phantom Development”, Chilton, UK, pp. 16–23, 1995.

    Google Scholar 

  289. G. Lazzi and O. P. Gandhi, “Realistically tilted and truncated anatomically based models of the human head for dosimetry of mobile telephones,” IEEE Trans. Electromag. Compat.., vol. 39, pp. 55–61, 1997.

    Article  Google Scholar 

  290. A. Bahr, S.-G. Pan, T. Beck, R. Kästle, T. Schmid, and N. Kuster, “Comparison between numerical and experimental near-field evaluation of a DCS1800 mobile telephone,” Radio Science, vol. 33, pp. 1553–1563, 1998.

    Article  Google Scholar 

  291. V. Hombach, K. Meier, M. Burkhardt, E. Kühn, and N. Kuster, “The dependence of EM energy absorption upon human head modeling at 900MHz,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1865–1873, 1996.

    Article  Google Scholar 

  292. K. Meier, R. Kästle, V. Hombach, R. Tay, and N. Kuster, “The dependence of EM energy absorption upon human head modeling at 1800MHz,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2058–2062, 1997.

    Article  Google Scholar 

  293. F. Schönborn, M. Burkhardt, and N. Kuster, “Differences in energy absorption between heads of adults and children in the near field of sources,” Health Phys., vol. 74, pp. 160–168, 1998.

    Article  Google Scholar 

  294. M. F. lskander, Z. Yun, and R. Quintero-Illera, “Polarization and human body effects on the microwave absorption in a human head exposed to radiation from handheld devices,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 19791987, 2000.

    Google Scholar 

  295. C. Gabriel, S. Gabriel and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey,” Phys. Med. Biol., vol. 41, pp. 2231–2249, 1996.

    Article  Google Scholar 

  296. S. Gabriel, R. W. Lau and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10Hz to 20GHz,” Phys. Med. Biol., vol. 41, pp. 2251–2269, 1996.

    Article  Google Scholar 

  297. S. Gabriel, R. W. Lau and C. Gabriel: “The dielectric properties of biological tissues: Ill. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, pp. 2271–2293, 1996.

    Article  Google Scholar 

  298. N. Stevens and L. Martens, “Comparison of averaging procedures for SAR distributions at 900 and 1800MHz,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2180–2184, 2000.

    Article  Google Scholar 

  299. International Commission on Non-Ionising Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz),” Health Phys., vol. 74, pp. 494–522, 1998.

    Google Scholar 

  300. European Commission (EC), “Council Recommendation 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz),” Off. J.Eur. Commun., L 199, 59, 30 July 1999.

    Google Scholar 

  301. C. Streffer, “Molecular and cellular mechanisms of hyperthermia,” in Thermoradiotherapy and Thermochemotherapy. Volume 1: Biology, Physiology, and Physics, M. H. Seegenschmiedt, P. Fessenden and C. C. Vernon (ed.), pp. 47–74. Berlin: Springer-Verlag, 1995.

    Google Scholar 

  302. A. W. Guy, J. C. Lin, P. O. Kramar, and A. F. Emery, “Effect of 2450-MHz radiation on the rabbit eye,” IEEE Trans. Microwave Theory Tech.,vol. 23, pp. 492498, 1975.

    Google Scholar 

  303. A. Taflove and M. E. Brodwin, “Computation of the electromagnetic fields and induced temperatures within a model of the microwave irradiated human eye,” IEEE Trans. Microwave Theory Tech., vol. 23, pp. 888–896, 1975.

    Article  Google Scholar 

  304. K. E. Mokhtech, G. Y. Delisle, and A. G. Roberge, “SAR mapping within the human eye due to portable transceivers,” Proc. of the IEEE Int. EMC Symp., Chicago, IL, pp. 26–30, 1994.

    Google Scholar 

  305. V. Anderson and K. H. Joyner, “Specific absorption rate levels measured in a phantom head exposed to radio frequency transmissions from analog hand-held mobile phones,” Bioelectromagnetics, vol. 16, pp. 60–69, 1995.

    Article  Google Scholar 

  306. Y. Lu, J. Ying, T. K. Tan, and K. Arichandran, “Electromagnetic and thermal simulations of 3-D human head model under RF Radiation by using the FDTD and FD approaches,” IEEE Trans. Magn., vol. 32, pp. 1653–1656, 1996.

    Article  Google Scholar 

  307. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2074–2082, 1998.

    Article  Google Scholar 

  308. J. Wang and O. Fujiwara, “FDTD computation of temperature rise in the human head for portable telephones”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1528–1534, 1999.

    Google Scholar 

  309. G. M. van Leeuwen, J. J. Lagendijk, B. J. van Leersum, A. P. Zwamborn, S. N. Hornsleth, and A.N. Kotte, “Calculation of change in brain temperature due to exposure to a mobile phone,” Phys. Med. Biol., vol. 44, pp. 2367–2379, 1999.

    Article  Google Scholar 

  310. P. J. Riu and K. R. Foster, “Heating by near-field exposure to a dipole: A model analysis,” IEEE Trans. Biomed. Eng., vol. 46, pp. 911–917, 1999.

    Article  Google Scholar 

  311. P. Wainwright, “Thermal effects of radiation from cellular telephones,” Phys. Med. Biol., vol. 45, pp. 2363–2372, 2000.

    Article  Google Scholar 

  312. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature increases in the head of a cellular-phone user,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1118–1126, 2000.

    Article  Google Scholar 

  313. H. Arkin, L. X. Xu and K. R. Holmes, “Recent developments in modeling heat transfer in blood perfused tissues,” IEEE Trans. Biomed. Eng., vol. 41, pp. 97107, 1994.

    Article  Google Scholar 

  314. H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, pp. 93–122, 1948.

    Google Scholar 

  315. G. J. Tortora and N. P. Anagnostakos, Principles of Anatomy and Physiology (6 th ed.). New York: Harper and Row Publishers Inc., 1990.

    Google Scholar 

  316. M. N. Özisik, Heat Conduction (2“d ed.). New York: Wiley Interscience, 1993.

    Google Scholar 

  317. S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980.

    MATH  Google Scholar 

  318. C. R. Paul, Introduction to Electromagnetic Compatibility, John Wiley &Sons, Inc., 1994.

    Google Scholar 

  319. F. M. Tesche, M. V. lanoz, T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, Inc., 1997.

    Google Scholar 

  320. A. Papoulis, Probability, Random Variables and Stochastic Processes, New York: McGraw-Hill, 1981.

    Google Scholar 

  321. P. T. Trakadas, P. J. Papakanellos, C. N. Cpsalis, “Probabilistic Response of a Transmission Line in a Dissipative Medium Excited by an Oblique Plane Wave”, Progress in Electromagnetics Research, PIER 33, 2001, pp. 45–68.

    Article  Google Scholar 

  322. P. J. Papakanellos, P. T. Trakadas, C. N. Capsalis, “Statistical Analysis of an Arbitrarily Oriented Two-Wire Transmission Line Embedded in a Dissipative Layer”, Electromagnetics, vol. 21, no. 5, pp. 381–400, July 2001.

    Article  Google Scholar 

  323. P. T. Trakadas, P. J. Papakanellos, C. N. Capsalis, “Statistical Characterization of the Terminal Voltages of a Transmission Line Embedded in Multi-Layer Media Excited by an Oblique Electromagnetic Wave”, presented in the Millenium Workshop on Biological Effects of Electromagnetic Fields,Crete, 2000, pp. 102107.

    Google Scholar 

  324. C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

    Google Scholar 

  325. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method, Artech House Publishers, 1994.

    Google Scholar 

  326. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method in Electromagnetics, CRC Press, 1993.

    Google Scholar 

  327. P. T. Trakadas, C. N. C.psalis, “Time-Domain Response of Non-Uniform Transmission Lines”, IEEE EMC Society Newsletter, Issue No. 186, Summer 2000, pp. 17–19.

    Google Scholar 

  328. P. T. Trakadas, C. N. Capsalis, “Validation of a Modified FDTD Method on Non-Uniform Transmission Lines”, Progress in Electromagnetics Research, vol. 31, 2001, pp. 317–335.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gajšek, P. et al. (2003). Mathematical Modeling of EMF Energy Absorption in Biological Systems. In: Stavroulakis, P. (eds) Biological Effects of Electromagnetic Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06079-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06079-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07697-8

  • Online ISBN: 978-3-662-06079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics