Skip to main content

Zonal features of phytodiversity under natural conditions and under human impact — a comparative survey

Características de fitodiversidad según zonas bajo condiciones naturales y bajo impacto humano: Un estudio comparativo

  • Chapter
Book cover Biodiversity

Abstract

Principal features of alpha and beta diversity for nine ecozones and two altitudinal gradients are presented (Fig. 17 and 16), although the types of diversity in them may vary considerably depending on community structure, topographic variety and different evolutionary processes. Under extratropical climatic conditions (including Mediterranean conditions), natural forests general exhibit fewer species and a less pronounced community diversity (Fig. 4 and 5) than traditionally cultivated landscapes (Fig. 9). The Mediterranean region of old in particular must be regarded as a very important genetic pool for weeds. As the result of man’s influence, plants originating there, and annuals in particular, have enriched neighbouring floristic regions. Under natural conditions, alpha and beta diversity are, in comparison, normally greater in ecozones with treeless tundras and steppes than in the forests of cold and temperate regions (Fig. 3 and 7).

In contrast to the situation in extratropical zones, it must be considered a general fact that any human impact on tropical regions and most subtropical regions with summer rain will reduce diversity. This is due to the loss of three characteristic life forms which constitute heterogeneity in tropical and subtropical forests: trees, climbers and epiphytes (Fig. 14 and 15). As a result, secondary successions lead to increasing species richness after abandonment — in contrast to Central Europe and the Mediterranean where it leads to a decrease (Fig. 6).

Consequently, when developing concepts for sustainability and environmental protection one has to consider these two contrasting zonal features of diversity: For the extratropical type of diversity, the maintenance of a dense pattern of different traditional land-use systems guarantees the highest level of alpha and beta diversity. In the tropics, greater diversity is ensured by combining nature conservation with optimized agriculture that imitates the structures and nutrition cycles of the region’s predominant natural ecosystems.

Resumen

Las principales caracteristicas de la diversidad alfa y beta en nueve ecozonas y dos gradientes altitudinales están presentes (figuras 17 y 16), aunque los tipos de diversidad pueden variar considerablemente dependiendo de la estructura de comunidades, la variedad topográfica y los diferentes procesos evolutivos. Bajo condiciones climáticas extratropicales (incluyendo las condiciones mediterráneas), los bosques naturales muestran por lo general menos especies y una diversidad de comunidades menos pronunciada (fig. 4 y 5) que los paisajes muy cultivados (fig. 9). La región mediterránea en particular ha de ser considerada una fuente genética muy importante de maleza. Como resultado de la influencia humana, las plantas ahí originadas, y en particulara las plantas anuales, han enriquecido las regiones vegetales colindantes. Bajo condiciones naturales, la diversidad alfa y beta suele ser también mayor en ecozonas con tundras despobladas de árboles y estepas que en los bosques de regiones frías y templadas (fig. 3 y 7).

Frente a la situatión en las zonas extratropicales, hay que considerar el hecho general de que cualquier impacto humano en las regiones tropicales y en la mayoria de las regiones subtropicales con lluvias de verano reducirá la biodiversidad. Esto se debe a la pérdida de très formas de vida características que constituyen la heterogeneidad tropical en los bosques tropicales y subtropicales, es decir: árboles, trepadoras y epifítas (flg. 14 y 15). Como resultado, sucesiones secundarias llevan a un aumento de la riqueza de especies después del abandono, frente a lo que ocurre en Centroeuropa y el Mediterrá;neo, donde llevan a un descenso (fig. 6).

Por lo tanto, a la hora de desarrollar conceptos para la sostenibilidad y protección medioambiental, hay que tener en cuenta estas dos características contrastivas de diversidad según zonas: Para el tipo de diversidad extratropical, el mantenimiento de un patrón denso de sistemas diferentes de uso tradicional del suelo garantiza el más alto nivel de diversidad alfa y beta. En los trópicos, se garantiza una mayor diversidad combinando la conservación de la Naturaleza con una agricultura optimizada que imite las estructuras y ciclos de nutrición de los ecosistemas naturales predominantes en la región.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeroyd JR, Heywood VH (1994) Regional overview: Europe. In: WWF & IUCN (eds) Centres of plant diversity I, pp 39–54

    Google Scholar 

  • Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants towards a world map of phytodiversity. Erdkunde 50: 317–327

    Article  Google Scholar 

  • Bergmeier E (1995) Die Höhenstufung der Vegetation in Südwest-Kreta (Griechenland) entlang eines 2450 m-Transektes. Phytocoenologia 25: 317–361

    Google Scholar 

  • Böhmer J, Richter M (1997) Regeneration of plant communities — an attempt to establish a typology and zonal system. Plant Research and Development 45: 74–88

    Google Scholar 

  • Carl T, Richter M (1989) Geoecological and morphological processes on abandonned vine-terraces in the Cinque Terre (Liguria). Geoökodynamik 10: 125–158

    Google Scholar 

  • Edlund SA, Taylor B (1989) Regional congruence of vegetation and summer climate patterns in the Queen Elizabeth Islands, N.W.T., Canada. Arctic 42: 3–23

    Google Scholar 

  • Gaston KJ, David R (1994) Hotspots across Europe. Biodiversity Letters 2: 108–116

    Article  Google Scholar 

  • Gentry A (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. A Missouri Bot Gard 75: 1–34

    Article  Google Scholar 

  • Gentry A (1995) Patterns of diversity and floristic composition in neotropical montane forests. In: Churchil SA et al. (eds) Biodiversity and conservation of neotropical montane forests, pp 527–539

    Google Scholar 

  • Gertenbach WPD (1983) Landscapes of the Krueger National Park. Koedoe 26: 9–121

    Article  Google Scholar 

  • Green RH (1979) Sampling design and statistical methods for environmental biologists. New York

    Google Scholar 

  • Harper KA, Kershaw PR (1996) Natural revegetation on borrow pits and vehicle tracks in shrub tundra, 48 years following construction of the CANOL No. 1 Pipeline, N.W.T., Canada. Artic and Alpine Research 28: 163–171

    Article  Google Scholar 

  • Holmen K (1957) The vascular plants of Peary Land, North Greenland. In: Meddelelser om Gronland 124/9. Kopenhagen

    Google Scholar 

  • Ibisch P (1996) Neotropische Epiphytendiversität — das Beispiel Bolivien. Archiv naturwissenschaftlicher Dissertationen 1. Wiehl

    Google Scholar 

  • Johansson DR (1974) Ecology of vascular epiphytes in West African rainforest. Acta Phytogeographica Suecica 59: 1–136

    Google Scholar 

  • Kozlov MV, Haukioja E, Yarmishko VT (eds.) (1993) Aerial pollution in Kola Peninsula. St. Petersburg

    Google Scholar 

  • Lauer W (1976) Zur hygrischen Höhenstufung tropischer Gebirge. In: Schmithüsen J (ed.) Neotropische Ökosysteme, Biogeographica VII, pp. 169–182

    Google Scholar 

  • Margalef R (1994) Dynamic aspects of diversity. J Veg Sci 5: 451–456

    Article  Google Scholar 

  • Ouellet H (1990) Avian zoogeography in the Canadian Arctic Islands. In: Harington CR (ed.) Canada’s missing dimension 2, pp. 516–545

    Google Scholar 

  • Petrovsky VV (1988) Vascular plants of Wrangel Island. Magadan (in Russian)

    Google Scholar 

  • Porembski S, Brown G, Barthlott W (1995) An inverted latitudinal gradient of plant diversity in shallow depressions on Ivorian inselbergs. Vegetatio 117: 151–163

    Article  Google Scholar 

  • Rannie WF (1986) Summer air temperature and number of vascular species in Arctic Canada. Arctic 39: 133–137

    Google Scholar 

  • Richter M (1995) Klimaökologische Merkmale der Küstenkordillere in der Region Antofagasta. Geoökodynamik 16: 283–332

    Google Scholar 

  • Richter M (1996) Klimatologische und pflanzenmorphologische Vertikalgradienten in Hochgebirgen. Erdkunde 50: 205–237

    Article  Google Scholar 

  • Richter M (1997) Allgemeine Pflanzengeographie. Stuttgart

    Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527

    Article  Google Scholar 

  • Rohde K (1996) Rapoport’s Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters 3: 10–13

    Article  Google Scholar 

  • Sinclair ARE (1979) Dynamics of the Serengeti Ecosystem. In: Sinclair ARE & Norton-Griffiths M (eds.) Serengeti — Dynamics of an ecosystem, pp. 1–30

    Google Scholar 

  • Seine R (1996) Vegetation von Inselbergen in Zimbabwe. Archiv naturwissenschaftlicher Dissertationen 2. Wiehl

    Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133: 240–256

    Article  Google Scholar 

  • Stevens GC (1996) Extending Rapoport’s rule to Pacific marine fishes. J Biogeogr 23: 149–154

    Article  Google Scholar 

  • Takhtajan A (1985) Floristic regions of the world. Berkeley, Los Angeles, London

    Google Scholar 

  • Ter Steege H, Cornelissen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21: 331–339

    Article  Google Scholar 

  • Thannheiser D (1988) Eine landschaftsökologische Studie bei Cambridge Bay, Victoria Island, N.W.T., Canada. In: Mitt Geogr Ges Hamburg 78: 3–51

    Google Scholar 

  • Witte HJJ (1994) Present and past vegetation and climate in the Northern Andes (Cordillera Central, Colombia): A quantitative approach. Amsterdam

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21: 213–251

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. New York, London

    Google Scholar 

  • Wolf JHD (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the Northern Andes. A Missouri Bot Gard 80: 928–960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, M. (2001). Zonal features of phytodiversity under natural conditions and under human impact — a comparative survey. In: Barthlott, W., Winiger, M., Biedinger, N. (eds) Biodiversity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06071-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06071-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08370-9

  • Online ISBN: 978-3-662-06071-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics