Biodiversity pp 181-197 | Cite as

Biodiversity — resource for new products, development and self-reliance

  • Werner Nader
  • Nicolas Mateo


Biodiversity is one important reason for the impressive growth of pharmaceutical, chemical and agro-industry in this century. “Patents” from nature and the ethnological knowledge linked to their use in day-to-day life have inspired generations of inventors to create a vast array of products ranging from Aspirin to Bacillus thuringensis and Phosphinothricin to Zocor, some of which generate annual sales of more than US$ 1 billion. Biodiversity’s genetic potential for biotechnology might be even greater, and products like tissue plasminogen activator from vampire bats, or high-laurate canola oil from rape seed transformed with a gene from an undomesticated Californian bay will soon be available on the market. Some of these new products might pose a threat to biodiversity or to the economies of tropical and subtropical countries, as in the case of Calgene’s high-laurate canola oil which can substitute coconut and palm kernel oil. The research agreement between INBio and Merck, Sharp & Dohme acknowledges that biodiversity can be used for product development in a sustainable manner and thus conserved for future generations. Royalty obligations on net sales of future pharmaceuticals, agrochemicals, fragrances and biotech products to finance conservation measures comprise only a minor fraction of potential benefits which might contribute to maintaining biological diversity and variability. Even more important are the contributions that capacity building and technology transfer can make to the scientific and technological development of biodiversity-rich countries. Fair research partnerships between source countries and industry and academic institutions in industrialised countries are necessary. National scientists must spend more time investigating biodiversity, both at the basic research level and in the development of new products. The use of biological diversity for socioeconomic development is an important goal for Costa Rica, and INBio is making a significant contribution to this process.


Source Country Royalty Payment Blood Coagulation Inhibitor Bacillus Thuringensis Fatty Acyl Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Biodiversidad — Fuente de nuevos productos, desarrollo y conciencia


Desde hace más de cien años la industria farmacéutica y química ha estado aprovechando el valor de la biodiversidad. Se ha desarrollado un espectro amplio de nuevos productos desde Aspirina a Zocor, derivados de compuestos naturales de microorganismos, plantas y animales. Algunos de estos productos tienen un volumen de ventas más de mil millones de dólares por año. El potencial de genes de la biodiversidad para la industria biotecnología podría exceder estos valores. Nuevos productos como un “Tissue Plasminogen Activator” producido a través de la ingeniería genética de un gene del vampiro o un nuevo aceite de colza, alto en ácido laúrico y producido en colza transgénica, van a aparecer pronto en el mercado. El acuerdo entre INBio y Merck, Sharp & Dome fuela primera concesión de un beneficiario hacia la biodiversidad, la que debe conservar el potencial biológico de los trópicos para las generaciones futuras. Regalias de ventas de productos futuros como nuevos fármacos, agroquímicos, fragancias o genes no son los únicos beneficios, que pueden contribuir a la conservación de la biodiversidad. Contribuciones como la transferencia de tecnología a los países en vías de desarollo tienen la misma importancia. Se requieren colaboraciones equitativas entre los países tropicales, la industria y el sector académico en los países industrializados. Los científicos nacionales deben obtener la oportunidad de investigar su riqueza biológica, no sólo en la ciencia fundamental, sino también para el desarollo de nuevos productos que fortalezcan su industria nacional. Este escenario podría conducir a nueva conciencia, motivación y orgullo acerca de “su biodiversidad” pro parte de los países tropicales. Todo esto contribuiría a la conservación de los recursos naturales. La utilización de la biodiversidad como fuente para el desarollo socioeconómico de Costa Rica es la meta del INBio y podría ser considerado como un proyecto piloto.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basf AG (1987) Verfahren zur Herstellung von mesophilen Mikroorganismen, die eine bei höherer Temperatur aktive D-Hydantoinase enthalten. German Patent Nr. 3535987Google Scholar
  2. Birch ANE, Robertson WM, Geoghegan IE, McGavin WJ, Alphey TJW, Phillips MS, Fellows LE, Watson AA, Simmonds MSJ, Porter EA (1993) DMDP —a plant-derived sugar analogue with systemic activity against plant parasitic nematodes. Nematologia 29:521–535CrossRefGoogle Scholar
  3. British Technology Group Ltd. (1994) Control of parasitic nematodes. US-Patent Nr. 5,376,675Google Scholar
  4. Calgene, Inc. (1994a) Plant thioesterase having preferential hydrolase activity toward CI2. US Patent Nr. 5,304,481Google Scholar
  5. Calgene, Inc. (1994b) Plant medium-chain-preferring acyl-ACP thioesterases and related methods. US Patent Nr. 5,298,421Google Scholar
  6. Calgene, Inc. (1994c) Plant thioesterases. US-Patent Nr. 5,344,771.Google Scholar
  7. Calgene, Inc. (1995a) Jojoba wax biosynthesis gene. US Patent Nr. 5,445,947Google Scholar
  8. Calgene, Inc. (1995b) Fatty acyl reductase. US Patent Nr. 5,411,879Google Scholar
  9. Corbin DR, Greenplate JT, Wong EY, Purcell JP (1994) Cloning of an insecticidal cholesterol oxidase gene and its expression in bacteria and in plant protoplasts. Applied and Environmental Microbiology 60: 4239–4244PubMedGoogle Scholar
  10. Cragg G, Boyd MR, Cardellina JH, Newman DJ, Snader KM, McCloud TG (1994) Ethnobotany and drug discovery: the experience of the US National Cancer Institute. Ciba Foundation Symposium 185 (Ethnobotany and the Search for New Drugs), Wiley & Sons, Great Britain, pp 178–190, pp discussion 191–196Google Scholar
  11. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167–169PubMedCrossRefGoogle Scholar
  12. Epand RM, Epand RF, Orlowski RC, Seyler JK, Colescott RL (1986) Conformational flexibility and biological activity of salmon calcitonin. Biochemistry 25: 1964–1968PubMedCrossRefGoogle Scholar
  13. Fellows L. (1983) Sugar shaped bullets from plants. Chemistry in Britain, September, 842–845Google Scholar
  14. Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W (1995) Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Research 4: 132–134PubMedCrossRefGoogle Scholar
  15. FMC Corporation (1993) Insecticidally effective peptides. US Patent Nr. 5,441,93.4Google Scholar
  16. Fortkamp E, Rieger M, Heisterberg-Moutses G, Schweitzer S, Sommer R (1986) Cloning and expression in Escherichia coli of a synthetic DNA for hirudin, the blood coagulation inhibitor in the leech. DNA 5: 511–517PubMedCrossRefGoogle Scholar
  17. Frost and Sullivan, Inc. (1992) The U.S. Market for Chemical Pesticides. Frost & Sullivan, Inc., New York, p 8Google Scholar
  18. Grünwald, J (1995) The European phytomedicines market: figures, trends, analyses. HerbalGram (Austin, Tx.) 34: 60–65Google Scholar
  19. Hoechst AG (1991) Phosphinothricin resistance gene. US Patent Nr. 5,077,399Google Scholar
  20. Jackson H, Parks TN (1990) Anticonvulsant action of an acrylamine-containting fraction from Agelenopsis spider venom. Brain Research 526: 338–343PubMedCrossRefGoogle Scholar
  21. Jacob L, Zasloff M (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Foundation Symposium 186, Wiley & Sons, Great Britain, pp 197–216, pp discussion 216–223Google Scholar
  22. Janzen DH, Fellows LE, Waterman PG (1990) What protects Lonchocarpus (Leguminosae) seeds in a Costa Rican dry forest? Biotropica 22 (3): 272–285CrossRefGoogle Scholar
  23. König G, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM (1994) Biological activities of selected marine natural products. Planta Medica 60: 532–537PubMedCrossRefGoogle Scholar
  24. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11: 194–200CrossRefGoogle Scholar
  25. Lee JH, Weickmann JL, Koduri RK, Gosh-Dastidar P, Saito K, Blair LC, Date T, Lai JS, Hollenberg SM, Kendall RL (1988) Expression of synthetic thaumatin genes in yeast. Biochemistry 27: 5101–5107PubMedCrossRefGoogle Scholar
  26. Mendelsohn R, Balick MJ (1995) The value of undiscovered pharmaceuticals in tropical forests. Economic Botany 49 (2): 223–228CrossRefGoogle Scholar
  27. Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN, McCrimmon D, Zasloff M (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Nat Acad Sci 90: 1354–1358PubMedCrossRefGoogle Scholar
  28. Nader WF, Rojas M (1996a) Gene Prospecting for sustainable use of the biodiversity in Costa Rica. Genetic Engineering News, New York, April 1, 1996Google Scholar
  29. Nader WF, Rojas M (1996b) New rules for natural compound and biotechnological research after INBio and Rio. BIOForum (Darmstadt), September and October issues Principe PP (1989) The economic significance of plants and their constituents as drugs. In: Wagner H, Hikino H, Farnsworth NR (eds.) Economic and Medicinal Plant Research, Vol. 3. Academic Press, London, pp 1–17Google Scholar
  30. Reid WV, Laird S, Meyer CA, Gámez R, Sittenfeld A, Janzen DH, Gollin MA, Juma C (1993) Biodiversity Prospecting: Using Genetic Resources for Sustainable Development. World Resources Institute, Washington D.C.Google Scholar
  31. Repetto R (1992) Accounting for Environmental Assets. Scientific American 266: 94–100PubMedCrossRefGoogle Scholar
  32. Research Foundation of the State University of New York (1994) Biological applications of alkaloids derived from the tunicate Eudistoma sp.-US Patent Nr. 5,278,168Google Scholar
  33. Rosenthal JP (1996) Equitable sharing of biodiversity benefits: agreements on genetic resources. OECD International Conference on Biodiversity Incentive Measures, Cairns, Australia, March 25–28, 1996Google Scholar
  34. Schleuning WD, Alagon A, Boidol W, Bringmann P, Petri T, Kratzschmar J, Haendler B, Langer G, Baldus B, Witt W (1992) Plasminogen activators from the saliva of Desmodus rotundus (common vampire bat): unique fibrin specificity. Annals of the New York Academy of Sciences 667: 395–403PubMedCrossRefGoogle Scholar
  35. Schlee D (1992) Ökologische Biochemie. G Fischer Verlag, Jena, p 394–424Google Scholar
  36. Shand H (1993) Agbio and third world development. Bio/Technology 11:13CrossRefGoogle Scholar
  37. ten Kate Kerry (1995) Biopiracy or Green Petroleum? Expectations & Best Practice in Bioprospecting. Overseas Development Administration, LondonGoogle Scholar
  38. Tamayo G, Nader WF, Sittenfeld A (in press, 1997) Biodiversity for the bioindustries. In: Ford-Lloyd BV, Newbury HJ, Callow JA (eds) Biotechnology and Plant Genetic Resources: Conservation and Use. CAB International, Wallingford, Oxon, EnglandGoogle Scholar
  39. Truve E, Aaspollu A, Honkanen J, Puska R, Mehto M, Hassi A, Teeri TH, Kelve M, Seppänen P, Saarma M (1993) Transgenic potato plants expressing mammalian 2’-5’ oligoadenylate synthetase are protected from potato virus X infection under field conditions. Bio/Technology 11: 1048–1052PubMedCrossRefGoogle Scholar
  40. US National Research Council (Panel of the Board on Science and Technology for International Development) (1992) Conserving Biodiversity: A Research Agenda for Development Agencies. National Academy Press, Washington D.C.Google Scholar
  41. Watanabe S, Kato H, Nagayama K, Abe H (1995) Isolation of 2R,5R-dihydroxy-methyl- 3R,4R-dihydroxy-pyrrolidin (DMDP) from the fermentation broth of Streptomyces sp. KSC-5791. Biosc Biotech Biochem 59: 936–937CrossRefGoogle Scholar
  42. Welter A, Jadot J, Dardenne G, Marlier M, Casimir J (1976) 2,5-Dihydroxymethyl-3,4- dihydroxypyrrolidone dans les feuilles de Derris elliptica. Phytochemistry 15: 747–749CrossRefGoogle Scholar
  43. Wilson EO (1992) Resolution. In: Wilson EO (ed.) The Diversity of Life. Harvard University Press, Cambridge, pp 311–342Google Scholar
  44. Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Nat Acad Sci 89: 11799–11803PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Werner Nader
    • 1
  • Nicolas Mateo
    • 1
  1. 1.Instituto Nacional de BiodiversidadSanto DomingoCosta Rica

Personalised recommendations