Skip to main content

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Saprophytic fungi are fairly omnivorous het-erotrophs. They grow in plant rhizospheres, and on available, compromised plant material such as burnt, wounded, dying or dead plants. Growing on plant material, they have well-developed enzyme complexes to digest cellulose, callose and hemicelluloses from plant cell walls as well as pectinases from the material of the middle lamella and starch from the plant’s own storage material. A limited subset of species also have enzymes to digest the varied and amorphous polyphenolic lignin associated with cell walls, but that is covered elsewhere. Parasitic species generally also have cutinase to aid in penetration of the cuticle to gain access to the host plant, and this may also be found in saprophytic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah M, Fleming ID, Taylor PM, Whelan WJ (1963) Substrate specificity of the amyloglucosidases of Aspergillus niger. Biochem J 89:35

    Google Scholar 

  • Abuja PM, Schmuck M, Pilz I, Claeyssens T, Esterbauer H (1988) Structural and functional domains in cellobio-hydrolase I from Trichoderma reesei. Eur Biophys J 15:339–342

    Article  CAS  Google Scholar 

  • Aleshin A, Golubev A, Firsov LM, Honzatko RB (1992) Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2 Ã… resolution. J Biol Chem 267:19291–19298

    PubMed  CAS  Google Scholar 

  • Allen JD, Thoma JA (1976) Subsite mapping of enzymes: application of the depolymerase computer model to two α-amylases. Biochem J 159:121–132

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yosizumi H (1986) Rhizopus raw-starch-degrading glucoamylase—its cloning and expression in yeast. Agric Biol Chem 50:957–964

    Article  CAS  Google Scholar 

  • Bailey CR, Arst HN (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577

    Article  PubMed  CAS  Google Scholar 

  • Beguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248

    Article  PubMed  CAS  Google Scholar 

  • Beily P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 29–52

    Google Scholar 

  • Bernabé M, Ahrazem O, Prieto A, Leal JA (2002) Evolution of fungal polysaccharides F1SS and proposal of their utilisation as antigens for rapid detection of fungal contaminants. EJEAFChe l:(http://ejeafche.uvigo.es/ 1(1)2002/004112002F.htm).

    Google Scholar 

  • Boel E, Hjort I, Svensson B, Norris F, Fiil NP (1984) Glucoamylase-Gl and glucoamylase-G2 from Aspergillus niger are synthesised from two different but closely related messenger RNAs. EMBO J 3:1097–1102

    PubMed  CAS  Google Scholar 

  • Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VI, Petersen SB, Swift H, Thim L, Woldike HF (1990) Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1 Ã… resolution of two enzymes from Aspergillus. Biochemistry 29:6244–6249

    Article  PubMed  CAS  Google Scholar 

  • Chang M (1971) Folding chain model and annealing of cellulose. J Polymer Sci 36:343–362

    Google Scholar 

  • Clarke AJ, Svensson B (1984) The role of tryptophanyl residues in the function of Aspergillus niger glucoamylase-Gl and glucoamylase-G2. Carlsberg Res Commun 49:559–566

    Article  CAS  Google Scholar 

  • Claros MG,del Pozo L, Abarca D, Jimenez A (1992) The promoter element GTACAAG of the SGA and STA2 genes is a possible target site for repression by the STAIO gene product from Saccharomyces cerevisiae. FEMS Microbiol Lett 92:57–62

    Article  Google Scholar 

  • Coughlan MP (1992) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 39:107–115

    Article  CAS  Google Scholar 

  • Coughlan MP, Tuohy MG, Filho EXF, Puls J, Claeyssens M, Vranska M, Hughes MM (1993) Enzymological aspects of microbial hemicellulases with emphasis on fungal systems. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 53–84

    Google Scholar 

  • Dean R (2002) Magnaporthe sequencing project. Fungal genomics laboratory at North Carolina State University (www.fungalgenomics.ncsu.edu/)

    Google Scholar 

  • El Gogary S, Leitz A, Crivellaro O, Eveleigh DE, El Doury H (1989) Mechanism by which cellulose triggers cellobiohydrolase 1 gene expression in Trichoderma reesei. Proc Natl Acad Sci USA 86:6138–6141

    Article  PubMed  Google Scholar 

  • Eriksson KE, Hamp SG (1978) Regulation of endo-l,4-β-D-glucanase production in Sporotrichum pulverulentum. Eur J Biochem 90:183–190

    Article  PubMed  CAS  Google Scholar 

  • Fowler T, Berka R, Ward M (1990) Regulation of the glaA gene of Aspergillus niger. Curr Genet 18:537–545

    Article  PubMed  CAS  Google Scholar 

  • Fujii M, Kawamura Y (1985) Synergistic action of α-amylase and glucoamylase on hydrolysis of starch. Biotechnol Bioeng 27:260–265

    Article  PubMed  CAS  Google Scholar 

  • Fujii M, Homma T, Taniguchi M (1988) Synergism of α-amylase and glucoamylase on hydrolysis of native starch granules. Biotechnol Bioeng 32:910–915

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo S, Borkovich KA, Selker E, Read ND, Jaffe D, et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Gilligan W, Reese ET (1954) Evidence for multiple components in microbial cellulases. Can J Microbiol 1:90–107

    Article  PubMed  CAS  Google Scholar 

  • Hayashida S, Nomura T, Yoshino E, Hongo M (1975) The formation and properties of subtilisin-modified glucoamylase. Agric Biol Chem 40:141–146

    Article  Google Scholar 

  • Hazlewood GP, Gilbert HJ (1993) Molecular biology of hemicellulases. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 103–126

    Google Scholar 

  • Henrissat B, Rameau A (1995) Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J 311: 350–351

    PubMed  CAS  Google Scholar 

  • Henrissat B, Claessens M, Tomme P, Lemesle L, Momon JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81:83–89

    Article  PubMed  CAS  Google Scholar 

  • Hiromi K, Kawai M, Ono S (1966) Kinetic studies on glucoamylase—IV: hydrolysis of isomaltose. J Biochem 59:476–480

    PubMed  CAS  Google Scholar 

  • Itoh T, Ohtsuki I, Yamashita I, Fukui S (1987) Nucleotide sequence of the glucoamylase gene GLUI in the yeast Saccharomycopsis fibuligera. J Bacteriol 169:4171–4176

    PubMed  CAS  Google Scholar 

  • Jackson MA, Talburt DE (1988) Purification and partial characterisation of an extracellular β-glucosidase of Trichoderma reesei using cathodic run, polyacrylamide-gel electrophoresis. Biotechnol Bioeng 32:903–909

    Article  PubMed  CAS  Google Scholar 

  • Jespersen HM, Macgregor EA, Sierks MR, Svensson B (1991) Comparison of domain-level organisation of starch hydrolases and related enzymes. Biochem J 280:51–55

    PubMed  CAS  Google Scholar 

  • Knowles J, Lehtovaara P, Teeri T (1987) Cellulase families and their genes. Trends Biotechnol 5:255–260

    Article  CAS  Google Scholar 

  • Kubicek CP, Eveleigh DE, Esterbauer H, Steiner W, Pranz EM (eds) (1990) Trichoderma reesei cellulases: biochemistry, genetics, physiology and applications. Proc TRICEL 89 Meet, R Soc Chem, London

    Google Scholar 

  • MacGregor EA, Svensson B (1989) A super-secondary structure predicted to be common to several alpha 1,4-D-glucan-cleaving enzymes. Biochem J 259: 145–152

    PubMed  CAS  Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Takaamylase A. J Biochem 95:697–702

    PubMed  CAS  Google Scholar 

  • Neustroev KN, Golubev AM, Firsov LM, Ibatullin FM, Protasevich II, Makarov AA (1993) Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett 316:157–160

    Article  PubMed  CAS  Google Scholar 

  • Puls J, Schuseil J (1993) Chemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 1–28

    Google Scholar 

  • Quiocho FA (1986) Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem 55:287–315

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo M, Lehtovaara P, Nevalainen H Bhikhabhai R, Knowles J (1988) EGIII, a new endonuclease from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63:11–21

    Article  PubMed  CAS  Google Scholar 

  • Sierks MR, Svensson B (1992) Kinetic identification of a hydrogen-bonding pair in the glucoamylase-maltose transition-state complex. Protein Eng 5:185–188

    Article  PubMed  CAS  Google Scholar 

  • Sierks MR, Ford C, Reilly PJ, Svensson B (1990) Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of ASP176, GLU179 and GLU180 in the enzyme from Aspergillus awamori. Protein Eng 3:193–198

    Article  PubMed  CAS  Google Scholar 

  • Sierks MR, Ford C, Reilly PJ, Svensson B (1993) Functional roles and subsite locations of LEU177, TRP178 and ASN182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Protein Eng 6:75–79

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Sierks MR (1992) Roles of the aromatic side-chains in the binding of substrates, inhibitors, and cyclomaltooligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification and mutagenesis. Carbohydr Res 227:29–47

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Larsen K, Gunuarrson A (1986) Characterisation of a glucoamylase G2 from Aspergillus niger. Eur J Biochem 154:497–502

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Jespersen H, Sierks MR, MacGregor EA (1989) Sequence homology between putative raw starch binding domains from different starch-degrading enzymes. Biochem J 264:309–311

    PubMed  CAS  Google Scholar 

  • Svensson B, Clarke AJ, Svendsen J, Moller H (1990) Identification of carboxylic acid residues in glucoamylase-G2 from Aspergillus niger that participate in catalysis and substrate-binding. Eur J Biochem 188:29–38

    Article  PubMed  CAS  Google Scholar 

  • Tada S, Gomi K, Kitamoto K, Kumagai C, Tamuta G, Hara S (1991) Identification of the promoter region of the Taka-amylase A gene required for starch induction. Agric Biol Chem 55:593–599

    Article  Google Scholar 

  • Taleb F, Radford A (1995) The cellulase complex of Neurospora crassa: cbh-1 cloning, sequencing and homologies. Gene 161:137–138

    Article  PubMed  CAS  Google Scholar 

  • Teeri T, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J (1987) Homologous domains in Trichoderma reesei cellulase enzymes: gene sequence and expression of CBHII. Gene 51:43–52

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence-weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tonomura K, Suzuki H, Nakamura N, Kuraya K, Tanabe O (1961) On the inducers of α-amylase formation in Aspergillus oryzae. Agric Biol Chem 25:1–10

    Google Scholar 

  • WICGR (2002) Whitehead Institute/MIT Center for Genome Research Magnaporthe grisea genome project (www-genome.wi.mit.edu/annotation/fungi/ magnaporthe/)

    Google Scholar 

  • Williamson G, Belshaw NJ, Noel TR, Ring SG, Williamson MP (1992a) O-glycosylation and stability—unfolding of glucoamylase induced by heat and guanidine hydrochloride. Eur J Biochem 207:661–670

    Article  PubMed  CAS  Google Scholar 

  • Williamson G, Belshaw NJ, Williamson MP (1992b) O-glycosylation in Aspergillus glucoamylase—conformation and role in binding. Biochem J 282:423–428

    PubMed  CAS  Google Scholar 

  • Wood M (1975) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13:407–410

    Google Scholar 

  • Woodward J (1991) Synergism in cellulase systems. Bioresource Technol 36:67–75

    Article  CAS  Google Scholar 

  • Yazdi MT (1990) Cellulase production by Neurospora crassa. PhD Thesis, The University of Leeds

    Google Scholar 

  • Yazdi MT, Radford A, Keen JR, Woodward JR (1990) Cellulase production by Neurospora crassa: purification and characterization of cellulolytic enzymes. Enzyme Microb Technol 12:120–123

    Article  PubMed  CAS  Google Scholar 

  • Yoshino E, Hayashida S (1978) Formation of active derivatives of glucoamylase I during the digestion with fungal acid protease and α-mannosidase. Agric Biol Chem 42:927–933

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radford, A. (2004). Polysaccharidases. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics