Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 145))

Abstract

The virulence of Bacillus anthracis depends principally on two extracellular products, an antiphagocytic poly-γ-D-glutamic acid capsule, and a three-component protein exotoxin (Smith et al. 1955). The central role of these two virulence factors is demonstrated by the greatly reduced virulence of strains purged of either of two large plasmids, pXOl and pXO2, which encode the toxin and capsule, respectively. Furthermore, the fact that antibodies to the toxin protect animals from infection (Gladstone 1946) demonstrates that anthrax, like diphtheria and tetanus, is a strongly toxin-dependent disease. Sterne-type B. anthracis strains lacking pXO2 are effective live vaccines, because they are avirulent but still able to make toxin and induce anti-toxin antibodies (Sterne 1937).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almond BD, Eidels L (1994) The cytoplasmic domain of the diphtheria toxin receptor ( HB-EGF precursor) is not required for receptor-mediated endocytosis. J Biol Chem 269: 26635–26641

    Google Scholar 

  • Arora N (1997) Site directed mutagenesis of histidine residues in anthrax toxin lethal factor binding domain reduces toxicity. Mol Cell Biochem 177: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Arora N, Leppla SH (1993) Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem 268: 3334–3341

    PubMed  CAS  Google Scholar 

  • Arora N, Leppla SH (1994) Fusions of anthrax toxin lethal factor with Shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect Immun 62: 4955–4961

    PubMed  CAS  Google Scholar 

  • Arora N, Kumpel KR, Singh Y, Leppla SH (1992) Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells..J.Biol.Chem. 267: 15542–15548

    CAS  Google Scholar 

  • Arora N, Williamson LC, Leppla SH, Halpern JL (1994) Cytotoxic effects of a chimeric protein consisting of tetanus toxin light chain and anthrax toxin lethal factor in non-neuronal cells. J Biol Chem 269: 26165–26171

    PubMed  CAS  Google Scholar 

  • Baillie L, Moir A, Manchee R (1998) The expression of the protective antigen of Bacillus anthracis in Bacillus suhtilis. J Appl Microb 84: 741–746

    CAS  Google Scholar 

  • Ballard JD, Collier RJ, Starnbach MN (1996) Anthrax-toxin-mediated delivery of a cytotoxic T-cell epitope in vivo. Proc Natl Acad Sci USA 93: 12531–12534

    Article  PubMed  CAS  Google Scholar 

  • Ballard JD, Collier RJ, Starnbach MN (1998a) Anthrax toxin as a molecular tool for stimulation of cytotoxic t lymphocytes: disulfide-linked epitopes, multiple injections, and role of CD4(+) cells. Infect Immun 66: 4696–4699

    PubMed  CAS  Google Scholar 

  • Ballard JD, Doling AM, Beauregard K, Collier RJ, Starnbach MN (1998b) Anthrax toxin-mediated delivery in vivo and in vitro of a cytotoxic T-lymphocyte epitope from ovalbumin. Infect Immun 66: 615–619

    PubMed  CAS  Google Scholar 

  • Bartkus JM, Leppla SH (1989) Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect Immun 57: 2295–2300

    CAS  Google Scholar 

  • Beall FA, Taylor MJ, Thorne CB (1962) Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis- J Bacteriol 83: 1274–1280

    CAS  Google Scholar 

  • Benson EL, Huynh PD, Finkelstein A, Collier RJ (1998) Identification of residues lining the anthrax protective antigen channel. Biochemistry 37: 3941–3948

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar R, Singh Y, Leppla SH, Friedlander AM (1989) Calcium is required for the expression of anthrax lethal toxin activity in the macrophage-like cell line J774A.1. Infect Immun 57: 2107–2114

    PubMed  CAS  Google Scholar 

  • Bhatnagar R, Ahuja N, Goila R, Batra S, Waheed SM, Gupta P (1999) Activation of phospholipase C and protein kinase C is required for expression of anthrax lethal toxin cytotoxicity in J774A.1 cells. Cellular Signalling 11: 111–116

    Article  PubMed  CAS  Google Scholar 

  • Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci USA 93: 8437–8442

    Article  PubMed  CAS  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86: 2209–2213

    Article  PubMed  CAS  Google Scholar 

  • Bragg TS, Robertson DL (1989) Nucleotide sequence and analysis of the lethal facto] gene (lef) from Bacillus anthracis. Gene 81: 45–54

    CAS  Google Scholar 

  • Brossier F, Sirard JC, Guidi-Rontani C, Duflot E, Mock M (1999) Functional analysis of the carboxy-terminal domain of Bacillus anthracis protective antigen. Infect Immun67:964–967 -

    Google Scholar 

  • Cataldi A, Labruyere E, Mock M (1990) Construction and characterization of a pro- tective antigen-deficient Bacillus anthracis strain. Mol Microbiol 4: 1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Cornille F, Martin L, Lenoir C, Cussac D, Rogues BP, FournieZaluski MC (1997) Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J Biol Chem 272: 3459–3464

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Sirard JC, Mock M, Koehler TM (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbicl 16: 1171–1181

    Article  CAS  Google Scholar 

  • Deutscher SL, Nuwayhid N, Stanley P, Briles EI, Hirschberg CB (1984) Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP—sialic acid transport. Cell 39: 295–299

    Article  PubMed  CAS  Google Scholar 

  • Draper RK, Simon MI (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J Cell Biol 87: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF (1998) Proteolytic inactivation of MAP-Kinase-Kinase by anthrax lethal factor. Science 280: 734737

    Google Scholar 

  • Escuyer V, Collier RJ (1991) Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59: 3381–3386

    PubMed  CAS  Google Scholar 

  • Escuyer V, Duflot E, Sezer O, Danchin A, Mock M (1988) Structural homology between virulence-associated bacterial adenylate cyclases. Gene 71: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Ezzell JW, Ivins BE, Leppla SH (1984) Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect Immun 45: 761–767

    PubMed  CAS  Google Scholar 

  • Faines PO, Olsnes S (1998) Modulation of the intracellular stability and toxicity of diphtheria toxin through degradation by the N-end rule pathway. EMBO J 17: 615–625

    Google Scholar 

  • Farchaus JW, Ribot WJ, Jendrek S, Little SF (1998) Fermentation, purification, and characterization of protective antigen from a recombinant, avirulent strain of Bacillus anthracis. Appl Environ Microbiol 64: 982–991

    CAS  Google Scholar 

  • Finkelstein A (1994) The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin. Toxicology 87: 29–41

    Article  PubMed  CAS  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261: 7123–7126

    PubMed  CAS  Google Scholar 

  • Friedlander AM, Brachman PS (1998) Anthrax. In: Plotkin SA, Mortimer EA (eds) Vaccines. W. B. Saunders, Philadelphia, pp 729–739

    Google Scholar 

  • Friedlander AM, Raziuddin A (1992) Anthrax protective antigen receptor: Identification of a protective antigen binding protein by chemical cross-linking. In: Withholdt B (ed) Bacterial protein toxins. Gustav Fischer, New York, pp 365–366

    Google Scholar 

  • Fritz G, Schroeder P, Aktories K (1995) Isolation and characterization of a Clostridium botulinum C2 toxin-resistant cell line: evidence for possible involvement of the cellular C2II receptor in growth regulation. Infect Immun 63: 2334–2340

    PubMed  CAS  Google Scholar 

  • Gibert M, Perelle S, Daube G, Popoff MR (1997) Clostridium spiroforme toxin genes are related to C. perfringens iota toxin genes but have a different genomic localization. Syst Appl Microbiol 20: 337–347

    Google Scholar 

  • Gill DM (1978) Seven toxin peptides that cross cell membranes. In: Jeljaszewicz J, Wadstrom T (eds) Bacterial toxins and cell membranes. Academic, New York, pp 291–332

    Google Scholar 

  • Gladstone GP (1946) Immunity to anthrax. Protective antigen present in cell-free culture filtrates. Brit J Exp Path 27: 349–418

    Google Scholar 

  • Goletz TJ, Klimpel KR, Arora N, Leppla SH, Keith JM, Berzofsky JA (1997a) Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gp120-anthrax toxin fusion protein. Proc Natl Acad Sci USA 94: 12059–12064

    Article  PubMed  CAS  Google Scholar 

  • Goletz TJ, Klimpel KR, Leppla SH, Keith JM, Berzofsky JA (1997b) Delivery of antigens to the MHC class I pathway using bacterial toxins. Hum Immunol 54: 129136

    Google Scholar 

  • Gordon VM, Leppla SH, Hewlett EL (1988) Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56: 1066–1069

    PubMed  CAS  Google Scholar 

  • Gordon VM, Young WW Jr, Lechler SM, Gray MC, Leppla SH, Hewlett EL (1989) Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J Biol Chem 264: 14792–14796

    PubMed  CAS  Google Scholar 

  • Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63: 82–87

    PubMed  CAS  Google Scholar 

  • Guignot J, Mock M, Fouet A (1997) AtxA activates the transcription of genes harbored by both Bacillus anthracis virulence plasmids. FEMS Microbiol Lett 147: 203207

    Google Scholar 

  • Gupta P, Batra S, Chopra AP, Singh Y, Bhatnagar R (1998) Expression and purification of the recombinant lethal factor of Bacillus anthracis. Infect Immun 66: 862–865

    CAS  Google Scholar 

  • Hammond SE, Hanna PC (1998) Lethal factor active-site mutations affect catalytic activity in vitro. Infect Immun 66: 2374–2378

    PubMed  CAS  Google Scholar 

  • Hanna P (1998) Anthrax pathogenesis and host response. CurrTop Microhiol Immunol 225: 13–35

    CAS  Google Scholar 

  • Hanna PC, Kochi S, Collier RJ (1992) Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol Biol Cell 3: 1269–1277

    PubMed  CAS  Google Scholar 

  • Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci USA 90: 10198–10201

    Article  PubMed  CAS  Google Scholar 

  • Hanna PC, Kruskal BA, Ezekowitz RA, Bloom BR, Collier RJ (1994) Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med 1: 718

    Google Scholar 

  • Hoover DL, Friedlander AM, Rogers LC, Yoon IK, Warren RL, Cross AS (1994) Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor a and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun 62: 4432–4439

    PubMed  CAS  Google Scholar 

  • Hornung JM,Thorne CB (1991) Insertion mutations affecting pXO1-associated toxin production in Bacillus anthracis, 91st. Annu Meet Am Soc Microhiol 98, D121 (Abstract)

    Google Scholar 

  • Ivins BE, Welkos SL (1986) Cloning and expression of the Bacillus anthracis protective antigen gene in Bacillus subtilis. Infect Immun 54: 537–542

    CAS  Google Scholar 

  • Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K, Adair DM, Hugh-Jones M, Kuske CR, Jackson P (1997) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers..1 Bacteriol 179: 818–824

    CAS  Google Scholar 

  • Kimura K, Kubota T. Ohishi I, Isogai E, Isogai H, Fujii N (1998) The gene for component-II of botulinum C2 toxin. Vet Microhiol 62: 27–34

    Article  CAS  Google Scholar 

  • Klimpel KR, Leppla SH (1996) Cysteine mutants of anthrax toxin protective antigen as tools to probe structure and function. Salisbury Medical Bulletin, Special Supplement, June, 1996, Proceedings of the International Workshop on Anthrax, Winchester, England, 19–21 Sep, 1995 87: 93–94

    Google Scholar 

  • Klimpel KR, Molloy SS, Thomas G, Leppla SH (1992) Anthrax toxin protective antigen is activated by a cell-surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA 89: 10277–10281

    Article  PubMed  CAS  Google Scholar 

  • Kumpel KR, Arora N, Leppla SH (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13: 1093–1100

    Article  Google Scholar 

  • Kochi SK, Martin I, Schiavo G, Mock M, Cabiaux V (1994) The effects of pH on the interaction of anthrax toxin lethal and edema factors with phospholipid vesicles. Biochemistry 33: 2604–2609

    Article  PubMed  CAS  Google Scholar 

  • Koehler TM, Collier RJ (1991) Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol Microbiol 5: 15011506

    Google Scholar 

  • Koehler TM, Dai Z, Kaufman-Yarbray M (1994) Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J Bacteriol 176: 586–595

    PubMed  CAS  Google Scholar 

  • Labruyere E, Mock M, Ladant D, Michelson S, Gilles AM, Laoide B, Barzu 0 (1990) Characterization of ATP and calmodulin-binding properties of a truncated forn’ of Bacillus anthracis adenylate cyclase. Biochemistry 29: 4922–4928

    CAS  Google Scholar 

  • Labruyere E, Mock M, Surewicz WK, Mantsch HH, Rose T, Munier H. Sarfati RS, Barzu 0 (1991) Structural and ligand-binding properties of a truncated form o-Bacillus anthracis adenylate cyclase and of a catalytically inactive variant in which glutamine substitutes for lysine-346. Biochemistry 30: 2619–2624

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Nati Acad Sci USA 79: 3162–3166

    Article  CAS  Google Scholar 

  • Leppla SH (1984) Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells. In: Greengard P (ed) Advances in cyclic nucleotide and protein phosphorvlation research. V(1 17. Raven Press, New York, pp 189–198

    Google Scholar 

  • Leppla SH (1988) Production and purification of anthrax toxin. Methods in Enzymology, 165: 103–116

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1991a) Purification and characterization of adenylyl cyclase from Bacillus anthracis. Methods in Enzymology, 195: 153–168

    CAS  Google Scholar 

  • Leppla SH (1991b) The Anthrax Toxin Complex. In: Alouf JE, Freer JH (eds) Source-book of bacterial protein toxins. Academic, London, pp 277–302

    Google Scholar 

  • Leppla SH (1995) Anthrax Toxins. In: Moss J, Iglewski B, Vaughan M, Tu A (eds) Bacterial toxins and virulence factors in disease. Handbook of natural toxins, Vol 8. Marcel Dekker, Inc., New York, pp 543–572

    Google Scholar 

  • Leppla SH, Friedlander AM, Cora E (1988) Proteolytic activation of anthrax toxin bound to cellular receptors. In: Fehrenbach F, Alouf JE, Falmagne P, Goebel W, Jeljaszewicz J, Jurgen D, Rappouli R (eds) Bacterial protein toxins. Gustav Fischer, New York, pp 111–112

    Google Scholar 

  • Lin CG, Kao YT, Liu WT, Huang HH, Chen KC, Wang TM, Lin HC (1996) Cytotoxic effects of anthrax lethal toxin on macrophage-like cell line J774A.1. Curr Microbiol 33: 224–227

    Article  PubMed  CAS  Google Scholar 

  • Little SF, Leppla SH, Cora E (1988) Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect Immun 56: 1807–1813

    PubMed  CAS  Google Scholar 

  • Little SF, Leppla SH, Burnett JW, Friedlander AM (1994) Structure-function analysis of Bacillus anthracis edema factor by using monoclonal antibodies. Biochem Biophys Res Commun 199: 676–682

    Article  PubMed  CAS  Google Scholar 

  • Little SF, Novak JM, Lowe JR, Leppla SH, Singh Y, Klimpel KR, Lidgerding BC, Friedlander AM (1996) Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology 142: 707–715

    Article  PubMed  CAS  Google Scholar 

  • Menard A, Altendorf K, Breves D, Mock M, Montecucco C (1996a) The vacuolar ATPase proton pump is required for the cytotoxicity of Bacillus anthracis lethal toxin. FEBS Lett 386: 161–164

    Article  PubMed  CAS  Google Scholar 

  • Menard A, Papini E, Mock M, Montecucco C (1996b) The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors. Biochem J 320: 687–691

    PubMed  CAS  Google Scholar 

  • Miller J, McBride BW, Manchee RJ, Moore P, Baillie LWJ (1998) Production and purification of recombinant protective antigen and protective efficacy against Bacillus anthracis. Letts Appl Microb 26: 56–60

    CAS  Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647653

    Google Scholar 

  • Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269: 2060720612

    Google Scholar 

  • Milne JC, Blanke SR, Hanna PC, Collier RJ (1995) Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino-or carboxy-terminus. Mol Microbiol 15: 661–666

    Article  PubMed  CAS  Google Scholar 

  • Molloy SS, Anderson ED, Jean F, Thomas G (1999) Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 9: 28–35

    Article  PubMed  CAS  Google Scholar 

  • Munier H, Blanco FJ, Precheur B, Diesis E, Nieto JL, Craescu CT, Barzu 0 (1993) Characterization of a synthetic calmodulin-binding peptide derived from Bacillus anthracis adenylate cyclase. J Biol Chem 268: 1695–1701

    CAS  Google Scholar 

  • Novak JM, Stein MP, Little SF, Leppla SH, Friedlander AM (1992) Functional characterization of protease-treated Bacillus anthracis protective antigen. J Biol Chem 267: 17186–17193

    PubMed  CAS  Google Scholar 

  • O’Brien J, Friedlander A, Dreier T, Ezzell J, Leppla S (1985) Effects of anthrax toxin components on human neutrophils. Infect Immun 47: 306–310

    PubMed  Google Scholar 

  • Pellizzari R, Rossetto O, Lozzi L, Giovedi S, Johnson E, Shone CC, Montecucco C (1996) Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neuro-toxins. J Biol Chem 271.20353–20358

    Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR (1993) Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 61: 5147–5156

    CAS  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997a) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium clil/ìcile CD 196. Infect Immun 65: 1402–1407

    PubMed  CAS  Google Scholar 

  • Perelle S, Scalzo S, Kochi S, Mock M. Popoff MR (1997b) Immunological and functional comparison between Clostridium perfringens iota toxin, C spirofornic toxin, and anthrax toxins. FEMS Microbiol Lett 146:117–2IX

    Google Scholar 

  • Petosa C, Liddington RC (1996) The anthrax toxin. In: Parker MW (ed) Protein toxin structure. Chapman and Hall, New York, pp 97–121

    Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385: 833–838

    Article  PubMed  CAS  Google Scholar 

  • Pezard C, Berche P, Mock M (1991) Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 59: 3472–3477

    CAS  Google Scholar 

  • Pezard C, Duflot E, Mock M (1993) Construction of Bacillus anthracis mutant strains producing a single toxin component. J Gen Microbiol 139: 2459–2463

    PubMed  CAS  Google Scholar 

  • Puziss M, Manning LC, Lynch JW, Barclay E, Abelow I, Wright GC, (1963) Large-scale production of protective antigen of Bacillus anthracis in anaerobic cultures. Appl Microbiol 11: 330–334

    PubMed  CAS  Google Scholar 

  • Quinn CP, Turnbull PCB (1998) Anthrax. In: Collier L, Balows A, Sussman M (eds) Bacterial infections. Topley and Wilson’s microbiology and microbial infections, Vol 3. Edward Arnold, London, pp 799–818

    Google Scholar 

  • Quinn CP, Shone CC, Turnbull PC, Melling J (1988) Purification of anthrax-toxin components by high-performance anion-exchange, gel-filtration and hydrophobic-interaction chromatography. Biochem J 252: 753–758

    PubMed  CAS  Google Scholar 

  • Quinn CP, Singh Y, Klimpel KR, Leppla SH (1991) Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J Biol Chem 266: 2012420130

    Google Scholar 

  • Roberts JE, Watters JW, Ballard JD, Dietrich WF (1998) Ltd, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol Microbiol 29: 58 1591

    Google Scholar 

  • Robertson DL, Tippetts MT, Leppla SH (1988) Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adcnylate cyclasc. Gene 73: 363–371

    Article  PubMed  CAS  Google Scholar 

  • Rogov SN, Beznosov MV, Chugai VL, Bashkova VA (1995) The isolation and purification of the protective antigen and the edema factor from the culture filtrate of Bacillus anthracis STI-1. Med Parazitol (Musk) 35–38

    Google Scholar 

  • Sandvig K, Olsnes S (1981) Rapid entry of nicked diphtheria toxin into cells at low pl1 Characterization of the entry process and effects of low pH on the toxin molecule. J Biol Chem 256: 9068–9076

    PubMed  CAS  Google Scholar 

  • Sharma M, Swain PK, Chopra AP, Chaudhary VK, Singh Y (1996) Expression and purification of anthrax toxin protective antigen from Escherichia coli. Protein ExpPurif 7: 33–38

    Article  CAS  Google Scholar 

  • Shin S, Kim YB, Hur GH (1999) Involvement of phospholipase A(2) activation in anthrax lethal toxin-induced cytotoxicity. Cell Biology And “Fcxicology 15: 19–29

    Article  CAS  Google Scholar 

  • Singh Y, Leppla SH, Bhatnagar R, Friedlander AM (1989a) Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cell. J Biol Chem 264: 11099–11102

    PubMed  CAS  Google Scholar 

  • Singh Y, Chaudhary VK, Leppla SH (1989b) A deleted variant of Bacillus anthrucus protective antigen is non-toxic and blocks anthrax toxin action in vivo. J Biol Cheri 264: 19103–19107

    CAS  Google Scholar 

  • Singh Y, Klimpel KR, Arora N, Sharma M, Leppla SH (1994) The chymotrypsinsensitive site, FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor. J Biol Chem 269: 29039–29046

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Goel S, Swain PK, Leppla SH (1999) Oligomerization of anthrax toxin protective antigen and binding of lethal factor during endocytic uptake into mammalian cells. Infect Immun 67: 1853–1859

    PubMed  CAS  Google Scholar 

  • Smith H, Keppie J, Stanley JL (1955) The chemical basis of the virulence of Bacillus anthracis. V. the specific toxin produced by B. anthracis in vivo. Brit J Exp Path 36: 460–472

    PubMed  CAS  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal a-hemolysin, a heptameric transmembrane pore. Science 274: 1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Sterne M (1937) Variation in Bacillus anthracis. Onderstepoort J Vet Sci Anim Ind 8: 271–349

    CAS  Google Scholar 

  • Strange RE, Thorne CB (1 958) Further purification of the protective antigen of Bacillus anthracis produced in vitro. J Bacteriol 76: 192–201

    Google Scholar 

  • Tang G, Leppla SH (1999) Proteasome activity is required for anthrax toxin lethal factor to kill macrophages. Infect Immun (In Press)

    Google Scholar 

  • Thorne CB (1993) Bacillus anthracis. In: Sonenshein AB, Hoch JA, Losick R (eds) Bacillus suhtilis and other Gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, D.C., pp 113–124

    Google Scholar 

  • Uchida I, Hornung JM, Thorne CB, Klimpel KR, Leppla SH (1993) Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacterial 175: 5329–5338

    CAS  Google Scholar 

  • Uchida I, Makino S, Sekizaki T, Terakado N (1997) Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol Microbiol 23: 1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Varshaysky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2: 13–28

    Article  Google Scholar 

  • Varughese M, Teixeira AV, Liu S, Leppla SH (1999) Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun 67: 1860–1865

    PubMed  CAS  Google Scholar 

  • Vietri NJ, Marrero R, Hoover TA, Welkos SL (1995) Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152: 1–9

    CAS  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248: 706–711

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Wattiez R, Brossier F, Mock M, Falmagne P, Ruysschaert JM, Cabiaux V (1998) Use of a photoactivatable lipid to probe the topology of PA63 of Bacillus anthracis in lipid membranes. Eur J Biochem 256: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Warren GW, Koziel MG, Mullins MA, Nye GJ, Carr B, Desai N, Kostischka K, Duck.N.B., Estruch JJ (1996) Novel pesticidal proteins and strains. Patent application WO 96/10083 (1996). World intellectual patent organization

    Google Scholar 

  • Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van OW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Welkos SL, Lowe JR, Eden-McCutchan F, Vodkin M, Leppla SH, Schmidt JJ (1988) Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69: 287–300

    CAS  Google Scholar 

  • Wesche J, Elliott JL, FaInes PO, Olsnes S, Collier RJ (1998) Characterization of membrane translocation by anthrax protective antigen. Biochemistry 37: 15737–15746

    Article  PubMed  CAS  Google Scholar 

  • Willhite DC, Blanke SR (1998) Soluble expression and one-step purification of recombinant Bacillus anthracis protective antigen. Prot Pept Lett 5: 273–278

    CAS  Google Scholar 

  • Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type-I11 system. Proc Natl Acad Sci USA 95: 13899–13904

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leppla, S.H. (2000). Anthrax Toxin. In: Aktories, K., Just, I. (eds) Bacterial Protein Toxins. Handbook of Experimental Pharmacology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05971-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05971-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08540-6

  • Online ISBN: 978-3-662-05971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics