Skip to main content

Abstract

A general theorem on Anosov maps allows us to say that in a certain sense Anosov maps that are close enough in C 2 can be considered as derived one from the other by a “change of coordinates”, which, however, is not really smooth. This is the theorem of structural stability of Anosov that can be formulated as follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Note

  1. Shields, P.: The theory of Bernoulli shifts, University of Chicago Press, Chicago, 1973.

    MATH  Google Scholar 

  2. Ornstein, D.: Ergodic theory, randomness and dynamical systems, Yale Mathematical Monographs, no. 5, Yale University Press, New Haven, 1974.

    MATH  Google Scholar 

  3. Gallavotti, G.: Ising model and Bernouilli schemes in one dimesnion, Communications in Mathematical Physics 32 (1973), 183–190.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ledrappier, F.: Mesure d’équilibre sur un reseau, Communications in Mathematical Physics 33 (1973), 119–128.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Monroy, G., Russo, L.: A family of codes between Markov and Bernoulli schemes, Communications in Mathematical Physics 43 (1975), 155–159.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Ornstein, D., Weiss, B.: unpublished (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gallavotti, G., Bonetto, F., Gentile, G. (2004). Special Problems in Chaotic Dynamics. In: Aspects of Ergodic, Qualitative and Statistical Theory of Motion. Texts and Monographs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05853-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05853-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07416-5

  • Online ISBN: 978-3-662-05853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics