Skip to main content

Quantum Logic and Quantum Probability

  • Chapter
Book cover Alternative Logics. Do Sciences Need Them?

Abstract

By events, or yes-no experiments, pertaining to some physical system we understand the physical quantities, or observables, that admit only two outcomes. Since the 1936 seminal work of G. Birkhoff and J. Neumann [4] it is recognized that, in the framework of physical systems exhibiting a quantum behaviour, the algebraic structure associated to the events is not an algebraic model of classical logic, it is the algebraic model of a new logic, to be called quantum logic. This fact outlines a deep departure from the realm of classical physics where the events pertaining to a physical system carry the structure of a Boolean algebra, hence an algebraic model of classical logic. In Sect. 2 we shall review the structure of the events of classical and of quantum events and we will recall the main branching point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Accardi, A. Fedullo: ‘On the Statistical Meaning of Complex Numbers in Quantum Mechanics’. Lett. Nuovo Cimento 34 (1982) pp. 161–172

    Article  MathSciNet  Google Scholar 

  2. A. Aspect: ‘Experimental Tests of Bell’s Inequalities With Correlated Photons’. In: Waves, Information and Foundations of Physics ed. by R. Pratesi, L. Ronchi ( Societ Italiana di Fisica, Bologna 1998 )

    Google Scholar 

  3. J.S. Bell: `On the Einstein-Podolsky-Rosen Paradox’. Physics 1 (1964) pp. 195–200

    Google Scholar 

  4. G. Birkhoff, J. von Neumann: ‘The Logic of Quantum Mechanics’. Ann. Math 37 (1936) p. 823

    Article  Google Scholar 

  5. E.G. Beltrametti, S. Bugajski: ‘The Bell Phenomenon in Classical Frameworks’. J. Phys. A: Math. Gen. 29 (1996) pp. 247–261

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. E.G. Beltrametti, S. Bugajski: ‘A Classical Extension of Quantum Mechanics’. J. Phys. A: Math. Gen. 28 (1995) pp. 3329–3343

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. E.G. Beltrametti, S. Bugajski: ‘Effect Algebras and Statistical Physical Theories’. J. Math. Phys. 38 (1997) pp. 3020–3030

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E.G. Beltrametti, G. Cassinelli: The Logic of Quantum Logics ( Addison Wesley, Reading 1981 )

    Google Scholar 

  9. E.G. Beltrametti, B.C. van Fraassen (eds.): Current Issues in Quantum Logic (Plenum,• New York 1981 )

    Google Scholar 

  10. E.G. Beltrametti, M.J. Maczynski: ‘On a Characterization of Classical and Nonclassical Probabilities’. J. Math. Phys. 32 (1991) pp. 1280–1286

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E.G. Beltrametti, M.J. Maczynski: ‘On the Characterization of Probabilities: A Generalization of Bell Inequalities’. J. Math. Phys. 34 (1993) pp. 4919–4929

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. E.G. Beltrametti, M.J. Maczynski: `On the Intrinsic Characterization of Classical and Quantum Probabilities’. In: Symposium on the Foundations of Quantum Physics ed. by P. Busch, P. Lahti, P. Mittelstaedt (World Scientific, Singapore 1993 )

    Google Scholar 

  13. G. Boole: `On the Theory of Probability’. In: Phil. Trans. Royal Soc. London, 152 (1862) pp. 225–252

    Google Scholar 

  14. S. Bugajski: ‘Fundamentals of Fuzzy Probability Theory’. Int. J. Theor. Phys. 35 (1996) pp. 2229–2244

    Article  MathSciNet  MATH  Google Scholar 

  15. E.B. Davies, J.T. Lewis: ‘An Operational Approach to Quantum Probability’. Comm Math. Phys. 17 (1970) pp. 239–260

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Einstein, B. Podolsky, N. Rosen: ‘Can Quantum-mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47 (1935) pp. 777–780

    MATH  Google Scholar 

  17. S. Gudder: ‘Fuzzy Probability Theory’. Demonstratio Mathematica 31 (1998) pp. 235–354

    MathSciNet  MATH  Google Scholar 

  18. M. Jammer The Philosophy of Quantum Mechanics ( Wiley, New York 1974 )

    Google Scholar 

  19. P. Mittelstaedt: Quantum Logic ( Reidel, Dordrecht 1978 )

    Book  MATH  Google Scholar 

  20. I. Pitowsky: ‘Quantum-Probability Logic’. In: Lecture Notes in Physics Vol. 321 ( Springer, Berlin 1989 )

    Google Scholar 

  21. P. Ptak, S. Pulmannova: Orthomodular Structures as Quantum Logics ( Kluwer Academic, Dordrecht 1991 )

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beltrametti, E.G. (2004). Quantum Logic and Quantum Probability. In: Weingartner, P. (eds) Alternative Logics. Do Sciences Need Them?. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05679-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05679-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07391-5

  • Online ISBN: 978-3-662-05679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics