Quantum Computers: the Church-Turing Hypothesis Versus the Turing Principle



Following the development of quantum computers, a question has arisen regarding the relation between the basis of the classical theory of computation and the quantum theory. Here I argue against Deutsch’s claim that a physical principle, the Turing principle, underlies the famous Church-Turing hypothesis. I also discuss the computational analogy and emphasize a certain line of argument suggesting it may be misplaced. Finally, I assess Deutsch’s claims for the dependence of mathematics upon empirical science, claims that arise as a consequence of his conception of computation and his adherence to the computational analogy.


Computational Analogy Computing Machine Mathematical Knowledge Turing Machine Mathematical Meaning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Austin. Sense and Sensibilia. Oxford University Press, 1962.Google Scholar
  2. 2.
    G. Boolos and R. Jeffrey. Computability and Logic. Cambridge University Press, 1974.zbMATHGoogle Scholar
  3. 3.
    A. Church. An unsolvable problem of elementary number theory. American Journal of Mathematics., 58:345–365, 1936. Repr. in [5] pp. 89–107.MathSciNetCrossRefGoogle Scholar
  4. 4.
    B. J. Copeland. Narrow versus wide mechanism: Including a re-examination of Turing’s views on the mind-machine issue. The Journal of Philosophy, XCVI(l), 2000.Google Scholar
  5. 5.
    M. Davis, editor. The Undecidable. Raven Press, Hewlett, New York, 1965.Google Scholar
  6. 6.
    M. Davis. Why Gödel didn’t have Church’s thesis. Information and Control, 54:3–24, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    D. Deutsch. Quantum theory, the Church-Turing Principle and the universal quantum computer. Proceedings of the Royal Society of London A, 400:97–117, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    D. Deutsch. The Fabric of Reality. Penguin Books, 1997.Google Scholar
  9. 9.
    D. Deutsch, A. Ekert, and R. Lupacchini. Machines, logic and quantum physics. See arXiv:math.HO/9911150, 1999.Google Scholar
  10. 10.
    J. Earman and J. Norton. Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science, 60:22–42, 1993.MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Ekert and R. Jozsa. Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics, 68(3):733–753, 1996.MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7), 1982.Google Scholar
  13. 13.
    L. Grover. A fast quantum-mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219, 1996.Google Scholar
  14. 14.
    P. M. S. Hacker. Wittgenstein: Meaning and Mind, Part 1. Blackwell, Oxford, 1993.Google Scholar
  15. 15.
    M. Hogarth. Non-Turing computers and non-Turing computability. Philosophy of Science Supplementary, I:126–138, 1994.Google Scholar
  16. 16.
    J. Hyman. Investigating Psychology: Sciences of the Mind after Wittgenstein, pages 1–24. Routledge, 1991.Google Scholar
  17. 17.
    M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.zbMATHGoogle Scholar
  18. 18.
    B. Schumacher. Quantum coding. Physical Review A, 51(4):2738, 1995.MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. G. Shanker. Wittgenstein versus Turing on the nature of Church’s thesis. Notre Dame Journal of Formal Logic, 28(4):615–49, October 1987. See also Shanker, S. G. Wittgensteins Remarks on the Foundations of AI, Chap. 1, Routledge, 1998.Google Scholar
  20. 20.
    P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35 th Annual IEEE Symposium on Foundations of Computer Science, 1994. See also arXiv:quant-ph/9508027.Google Scholar
  21. 21.
    R. I. Soare. Computability and recursion. The Bulletin of Symbolic Logic, 2(3), 1996.Google Scholar
  22. 22.
    A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–65, 1936. Repr. in [5] pp. 116–151.MathSciNetGoogle Scholar
  23. 23.
    A. White. Certainty. Proceedings of the Aristotelian Society Supplementary, 46:1–18, 1972.Google Scholar
  24. 24.
    L. Wittgenstein. The Blue and Brown Books. Blackwell, Oxford, 1960.Google Scholar
  25. 25.
    L. Wittgenstein. Philosophical Investigations. Blackwell, Oxford, third edition, 1967.Google Scholar
  26. 26.
    L. Wittgenstein. Remarks on the Foundations of Mathematics. Blackwell, Oxford, 1978. Eds., von Wright, G. H., Rhees, R. and Anscombe, G. E. M.Google Scholar
  27. 27.
    L. Wittgenstein. Remarks on the Philosophy of Psychology, volume 1. Black-well, Oxford, 1980. Eds., Anscombe, G. E. M. and von Wright, G. H.Google Scholar
  28. 28.
    A. C. Yao. Quantum circuit complexity. In Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.The Queen’s CollegeUniversity of OxfordUSA

Personalised recommendations