Turing’s Ideas and Models of Computation

  • Eugene Eberbach
  • Dina Goldin
  • Peter Wegner
Chapter

Summary

The theory of computation that we have inherited from the 1960s focuses on algorithmic computation as embodied in the Turing Machine to the exclusion of other types of computation that Turing had considered. In this chapter we present new models of computation, inspired by Turing’s ideas, that are more appropriate for today’s interactive, networked, and embedded computing systems. These models represent super-Turing computation, going beyond Turing Machines and algorithms. We identify three principles underlying super-Turing computation (interaction with the world, infinity of resources, and evolution of systems) and apply these principles in our discussion of the implications of super-Turing computation for the future of computer science.

References

  1. 1.
    Back T., Fogel D. B., Michalewicz Z. (eds.), Handbook of Evolutionary Computation, Oxford University Press, 1997.Google Scholar
  2. 2.
    “Algorithm.” Encyclopedia Britannica 2003 Encyclopedia Britannica Premium Service, http://www.britannica.com/eb/article?eu=5785.
  3. 3.
    Brooks R. A., Elephants Don’t Play Chess, in P. Maes (ed.), Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back, The MIT Press, 1994, pp. 3–15.Google Scholar
  4. 4.
    Burks A., Essays on Cellular Automata, Univ. of Illinois Press, 1970.MATHGoogle Scholar
  5. 5.
    Church A., An Unsolvable Problem of Elementary Number Theory, American Journal of Mathematics, 58:345–363, 1936.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Church A., Rosser J. B., Some properties of conversion, Transactions of the AMS, 39:472–482, 1936.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Copeland B. J., Super-Turing Machines, Complexity, 4(l):30–32, 1998.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Davis M., Why Gödel Didn’t Have Church’s Thesis, Information & Control, .54:3–24, 1982.MATHCrossRefGoogle Scholar
  9. 9.
    Eberbach E., Brooks R., Phoha S., Flexible Optimization and Evolution of Underwater Autonomous Agents, LNAI 1711, Springer-Verlag, Berlin Heidelberg New York, 1999, pp. 519–527.Google Scholar
  10. 10.
    Eberbach E., $-Calculus Bounded Rationality = Process Algebra + Anytime Algorithms, in: (ed. J. C. Misra) Applicable Mathematics: Its Perspectives and Challenges, Narosa Publishing House, New Delhi, Mumbai, Calcutta, 2001, pp. 213–220.Google Scholar
  11. 11.
    Eberbach E., Is Entscheidungsproblem Solvable? Beyond Undecidability of Turing Machines and Its Consequence for Computer Science and Mathematics, in: (ed. J. C. Misra) Computational Mathematics, Modelling and Algorithms, Narosa Publishing House, New Delhi, Chap. 1, 2003, pp. 1–32.Google Scholar
  12. 12.
    Eberbach E., On Expressiveness of Evolutionary Computation: Is EC Algorithmic?, Proc. 2002 World Congress on Computational Intelligence (WCCI), Honolulu, HI, 2002, pp. 564–569.Google Scholar
  13. 13.
    Farley B. G., Clark W. A., Simulation of self-organizing systems by digital computer, IRE Transactions on Information Theory, 4:76–84, 1954.MathSciNetGoogle Scholar
  14. 14.
    Fogel D. B. (ed.), Evolutionary Computation: The Fossil Record, IEEE Press, NY, 1998.MATHGoogle Scholar
  15. 15.
    Garzón M., Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks, An EATCS series, Springer-Ver lag, Berlin Heidelberg New York, 1995.MATHCrossRefGoogle Scholar
  16. 16.
    Gasarch W., Guest Column: The P=?NP Poll, SIGACT News, 33(2):34–47, June 2002.CrossRefGoogle Scholar
  17. 17.
    Gödel K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Monatsheñe für Mathematik und Physik, 38:173–198, 1931.CrossRefGoogle Scholar
  18. 18.
    Goldin D., Persistent Turing Machines as a Model of Interactive Computation, FoIKS’OO, Cottbus, Germany, 2000.Google Scholar
  19. 19.
    Goldin D., Smolka S., Wegner P., Turing Machines, Transition Systems, and Interaction, proc. 8 th Intl Workshop on Expressiveness in Concurrency, Aalborg, Denmark, August 2001Google Scholar
  20. 20.
    Hoare C. A. R., Communicating Sequential Processes, Prentice-Hall, 1985.MATHGoogle Scholar
  21. 21.
    Horvitz E., Zilberstein S. (eds.), Computational Tradeoffs under Bounded Resources, Artificial Intelligence, 126:1–196, 2001.Google Scholar
  22. 22.
    McCulloch W., Pitts W, A Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, 5:115–133, 1943.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Milner R., A Calculus of Communicating Systems, Lecture Notes in Computer Science, 94, Springer-Verlag, Berlin Heidelberg New York, 1980.MATHCrossRefGoogle Scholar
  24. 24.
    Milner R., Parrow J., Walker D., A Calculus of Mobile Processes, I & II, Information and Computation, 100:1–77, 1992.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Milner R., Elements of Interaction, Communications of the ACM, 36(l):78–89, January 1993.CrossRefGoogle Scholar
  26. 26.
    Milner R., Turing, Computing and Communication, a lecture for the 60th anniversary of Turing’s “Entscheidungsproblem” paper, King’s College, Cambridge England, 1997.Google Scholar
  27. 27.
    Minsky M. L., Theory of Neural-Analog Reinforcement Systems and Its Applications to the Brain-Model Problem, Ph.D. Thesis, Princeton University, 1954.Google Scholar
  28. 28.
    Penrose R., The Emperor’s New Mind, Oxford, 1989.Google Scholar
  29. 29.
    Pierce B., Turner D., Piet: A Programming Language Based on the Pi-Calculus, in: Plot kin G. et al (eds.), Proof, Language, and Interaction: Essays in Honour of Robin Milner, The MIT Press, 2000, pp. 455–494.Google Scholar
  30. 30.
    Plotkin G., Stirling C, Tofte M. (eds.), Proof, Language, and Interaction: Essays in Honour of Robin Milner, The MIT Press, 2000.Google Scholar
  31. 31.
    Rosenblatt F., The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Psychological Review, 65:386–408, 1958.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Russell S., Norvig P., Artificial Intelligence: A Modern Approach, 2nd edition, Prentice-Hall, 2003.Google Scholar
  33. 33.
    Samuel A. L., Some studies in machine learning using the game of checkers, IBM Journal of Research and Development, 3:211–229, 1959.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Siegelmann H., Neural Networks and Analog Computation: Beyond the Turing Limit, Birkhauser, 1999.MATHCrossRefGoogle Scholar
  35. 35.
    Simon, H. A. The Sciences of the Artificial. MIT Press, 1969.Google Scholar
  36. 36.
    Sipser, M. Introduction to the Theory of Computation, PWS Publishing Company, 1997.MATHGoogle Scholar
  37. 37.
    Teuscher C, Turing’s Connectionism: An Investigation of Neural Network Architectures, Springer-Ver lag, London, 2002.Google Scholar
  38. 38.
    Turing A., On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, series 2, 42:230–265, 1936–37.Google Scholar
  39. 39.
    Turing A., Systems of Logic based on Ordinals, Proceedings of the London Mathematical Society, series 2, 45:161–228, 1939.Google Scholar
  40. 40.
    Turing A., The ACE Report, in A. M. Turing’s Ace Report of 1946 and Other Papers, eds. B. E. Carpenter and R. W. Doran, MIT Press, 1986.Google Scholar
  41. 41.
    Turing A., Lecture to the London Math. Society on 20’th February 1947, in A. M. Turing’s Ace Report of 1946 and Other Papers, eds. B. E. Carpenter and R. W. Doran, MIT Press, 1986.Google Scholar
  42. 42.
    Turing A., Intelligent Machinery, 1948; in Collected Works of A. M. Turing: Mechanical Intelligence, ed. D. C. Ince, Elsevier Science, 1992.Google Scholar
  43. 43.
    Turing A., Computing Machinery and Intelligence, Mind, 59(236):433–460, 1950.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Turing A., The Chemical Basis of Morphogenesis, Philosophical Transactions of the Royal Society of London, B 237:37–72, 1952.CrossRefGoogle Scholar
  45. 45.
    Van Leeuwen J., Wiedermann J., The Turing Machine Paradigm in Contemporary Computing, in. B. Enquist and W. Schmidt (eds.) Mathematics Unlimited2001 and Beyond, LNCS, Springer-Verlag, Berlin Heidelberg New York, 2000.Google Scholar
  46. 46.
    Von Neumann J., Theory of Self-Reproducing Automata, (edited and completed by Burks A. W.), Univ. of Illinois Press, 1966.Google Scholar
  47. 47.
    Wegner P., Why Interaction is More Powerful Than Algorithms, Communications of the ACM, 40(5):81–91, 1997.CrossRefGoogle Scholar
  48. 48.
    Wegner P., Interactive Foundations of Computing, Theoretical Computer Science, 192:315–351, 1998.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Wegner P., Goldin D., Coinductive Models of Finite Computing Agents, Workshop on Coinductive Methods in Computer Science, Electronic Notes in Theoretical Computer Science, Amsterdam, March 1999.Google Scholar
  50. 50.
    Wegner P., Goldin D., Interaction as a Framework for Modeling, LNCS 1565, April 1999.Google Scholar
  51. 51.
    Wegner P., Goldin D., Computation Beyond Turing Machines, Communications of the ACM, April 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eugene Eberbach
    • 1
  • Dina Goldin
    • 2
  • Peter Wegner
    • 3
  1. 1.Computer and Information Science DepartmentUniversity of MassachusettsUSA
  2. 2.Computer Science &; Engineering DepartmentUniversity of ConnecticutUSA
  3. 3.Department of Computer ScienceBrown UniversityUSA

Personalised recommendations