Advertisement

The Mechanization of Mathematics

  • Michael J. Beeson
Chapter

Summary

The mechanization of mathematics refers to the use of computers to find, or to help find, mathematical proofs. Turing showed that a complete reduction of mathematics to computation is not possible, but nevertheless; the art and science of automated deduction has made progress. This paper describes some of the history and surveys the state of the art.

Keywords

Inference Rule Turing Machine Decision Procedure Automate Reasoning Quantifier Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, R., Kapur, D., Musser, D. R., and Nie, X., Tecton proof system. In: Book, R. (ed.), Proc. Fourth International Conference on Rewriting Techniques and Applications, Milan, Italy, 1991. LNCS 488, Springer-Verlag, Berlin Heidelberg New York (1991).Google Scholar
  2. 2.
    Appel, K., and Haken, W., Every planar map is four colorable. Part I. Discharging, Illinois J. Math. 21:429–490, 1977.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Appel, K., Haken, W. Haken, and Koch, J., Every planar map is four colorable. Part II. Reducibility, Illinois J. Math. 21:491–567, 1977.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arnon, D., and Buchberger, B., Algorithms in Real Algebraic Geometry, Academic Press, London (1988). Reprinted from J. Symbolic Computation 5, numbers 1 and 2, 1988.zbMATHGoogle Scholar
  5. 5.
    Baader, F., and Snyder, W., Unification theory, in [90], pp. 435–534.Google Scholar
  6. 6.
    Barendregt, H., The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and the Foundations of Mathematics 103, Elsevier Science Ltd., revised edition (October 1984).zbMATHGoogle Scholar
  7. 7.
    Barendregt, H., and Geuvers, BL, Proof-Assistants Using Dependent Type Systems, in: Robinson, A., and Voronkov, A. (eds.), Handbook of Automated Reasoning, vol II, pp. 1151–1238. Elsevier Science (2001).Google Scholar
  8. 8.
    Basu, S., Pollack, R., and Roy, M. F., On the Combinatorial and Algebraic Complexity of Quantifier Elimination, Journal of the ACM 43(6): 1002–1046, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Beeson, M., Some applications of Gentzen’s proof theory to automated deduction, in P. Schroeder-Heister (ed.), Extensions of Logic Programming, Lecture Notes in Computer Science 475, 101–156, Springer-Verlag, Berlin Heidelberg New York (1991).CrossRefGoogle Scholar
  10. 10.
    Beeson, M., Mathpert: Computer support for learning algebra, trigonometry, and calculus, in: A. Voronkov (ed.), Logic Programming and Automated Reasoning, Lecture Notes in Artificial Intelligence 624, Springer-Verlag, Berlin Heidelberg New York (1992).Google Scholar
  11. 11.
    Beeson, M., Mathpert Calculus Assistant. This software product was published in July, 1997 by Mathpert Systems, Santa Clara, CA. See http://www.mathxpert.com to download a trial copy.Google Scholar
  12. 12.
    Beeson, M., Automatic generation of epsilon-delta proofs of continuity, in: Cal-met, Jacques, and Plaza, Jan (eds.) Artificial Intelligence and Symbolic Computation: International Conference AISC-98, Plattsburgh, New York, USA, September 1998 Proceedings, pp. 67–83. Springer-Verlag, Berlin Heidelberg New York (1998).Google Scholar
  13. 13.
    Beeson, M., Automatic generation of a proof of the irrationality of e, Journal of Symbolic Computation 32(4):333–349, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Beeson, M., Unification in Lambda Calculus with if-then-else, in: Kirchner, C, and Kirchner, H. (eds.), Automated Deduction-CADE-15. 15 th International Conference on Automated Deduction, Lindau, Germany, July 1998 Proceedings, pp. 96–111, Lecture Notes in Artificial Intelligence 1421, Springer-Verlag, Berlin Heidelberg New York (1998).Google Scholar
  15. 15.
    Beeson, M., A second-order theorem-prover applied to circumscription, in: Gore, R., Leitsch, A., and Nipkow, T. (eds.), Automated Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 2001, Proceedings, Lecture Notes in Artificial Intelligence 2083, Springer-Verlag, Berlin Heidelberg New York (2001).Google Scholar
  16. 16.
    Beeson, M., Solving for functions, to appear. A preliminary version appeared in: LMCS 2002, Logic, Mathematics, and Computer Science: Interactions, Symposium in Honor of Bruno Buchbergets 60 th Birthday, pp. 24–38, RISC-Linz Report Series No. 02–60, Research Institute for Symbolic Computation, Linz (2002).Google Scholar
  17. 17.
    Belinfante, J., Computer proofs in Gödel’s class theory with equational definitions for composite and cross, J. Automated Reasoning 22(3):311–339, 1988.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Belinfante, J., On computer-assisted proofs in ordinal number theory, J. Automated Reasoning 22(3):341–378, 1988.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bledsoe, W. W., and Hines, L. M., Variable elimination and chaining in a resolution-based prover for inequalitiesGoogle Scholar
  20. 20.
    Boyer, R. S., and Moore, J. S., A Computational Logic Handbook, Academic Press, Boston (1988).zbMATHGoogle Scholar
  21. 21.
    Bronstein, M., Symbolic Integration I: Transcendental Functions, Springer-Verlag, Berlin Heidelberg New York (1997).zbMATHCrossRefGoogle Scholar
  22. 22.
    Brown, C, QEPCAD-B, a program for computing with semi-algebraic sets using CADs, to appear. Preprint available at http://www.cs.usna.edu/~wcbrown/research/M0TS2002.2.pdf. The program itself is available from http://www.cs.usna.edu/~qepcad/B/QEPCAD.html, and five example problems can be viewed at http://www.cs.usna.edu/~qepcad/B/examples/Examples. html.
  23. 23.
    Buchberger, B., et. al. Theorema: An Integrated System for Computation and Deduction in Natural Style, in: Kirchner, C, and Kirchner, H. (eds.), Proceedings of the Workshop on Integration of Deductive Systems at CADE-15, Lindau, Germany, July 1998, LNAI 1421, Springer, Berlin Heidelberg New York (1998).Google Scholar
  24. 24.
    Buchberger, B., Collins, C., and Loos, R., Computer Algebra: Symbolic and Algebraic Manipulation, second edition, Springer-Ver lag, Berlin Heidelberg New York (1983).Google Scholar
  25. 25.
    Bundy, A., The Computer Modelling of Mathematical Reasoning, Academic Press, London (1983).Google Scholar
  26. 26.
    Boole, C., The Laws of Thought, Dover, New York (1958). Original edition, MacMillan (1854).Google Scholar
  27. 27.
    Borsuk, K., and Szmielew, W. Foundations of Geometry, North-Holland, Amsterdam, (1960).zbMATHGoogle Scholar
  28. 28.
    Caviness, B.F., and Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer-Verlag, Berlin Heidelberg New York (1998).zbMATHGoogle Scholar
  29. 29.
    Church, A. An unsolvable problem of elementary number theory, American Journal of Mathematics 58, 345–363, 1936.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Clarke, E., and Zhao, X.: Analytica: A Theorem-Prover in Mathematica, in: Kapur, D. (ed.), Automated Deduction: CADE-11: Proc. of the 11 th International Conference on Automated Deduction, pp. 761–765, Springer-Verlag, Berlin Heidelberg New York (1992).Google Scholar
  31. 31.
    Collins, G.E., Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in: Proc. 2 nd Conf. on Automata Theory and Formal Languages, Lecture Notes in Computer Science, 33, 134–183, Springer-Verlag, Berlin Heidelberg New York. Reprinted in [28], pp. 85–121.Google Scholar
  32. 32.
    Conway, J., and Sloane, N., Sphere Packings, Lattices and Groups, Grundlehren Der Mathematischen Wissenschaften 290, Springer-Verlag, Berlin Heidelberg New York (1998).Google Scholar
  33. 33.
    Cope, D., Computers and Musical Style, A-R Editions, Madison (1991).Google Scholar
  34. 34.
    Cope, D., Experiments in Musical Intelligence, A-R Editions, Madison (1996).Google Scholar
  35. 35.
    Cope, D., The Algorithmic Composer, A-R Editions, Madison (2000).Google Scholar
  36. 36.
    Davenport, J., and Heintz, J., Real quantifier elimination is doubly exponential, in [4], pp. 29–35.Google Scholar
  37. 37.
    Davis, M., A computer program for Presburger’s algorithm, in Summaries of Talks Presented at the Summer Institute for Symbolic Logic, 1957 Second edition, published by Institute for Defense Analysis, 1960. Reprinted in [92], pp. 41–48.Google Scholar
  38. 38.
    Davis, M. The prehistory and early history of automated deduction, in [92], pp. 1–28.Google Scholar
  39. 39.
    Davis, M., The Universal Computer: The Road from Leibniz to Turing, Norton (2000). Reprinted in 2001 under the title Engines of Logic. Google Scholar
  40. 40.
    Davis, M., and Putnam, H., A computing procedure for quantification theory, J ACM 7, 201–215, 1960.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ernst, Z., Fitelson, B., Harris, K., McCune, W., Veroff, R., Wos, L., More First-order Test Problems in Math and Logic, in: Sutcliffe, G., Pelletier, J. and Suttner, C. (eds.) Proceedings of the CADE-18 Workshop-Problems and Problem Sets for ATP, Technical Report 02/10, Department of Computer Science, University of Copenhagen, Copenhagen (2002). The paper and associated Otter files can be accessed from http://www.mcs.anl.gov/~mccune/papers/paps-2002.Google Scholar
  42. 42.
    Fischer, M..J., and Rabin, M. O., Super-exponential complexity of Presburger arithmetic, SI AM-AMS Proceedings, Volume VII, pp. 27–41; reprinted in [28], pp. 122–135.Google Scholar
  43. 43.
    Frege, C, Begriffshrift, a formula language, modeled upon that of arithmetic, for pure thought., English translation in [102], pp. 1–82. Original date 1879.Google Scholar
  44. 44.
    Gelernter, H., Realization of a geometry-theorem proving machine, Proc. International Conference on Information Processing, UNESCO House 273–282, (1959). Reprinted in Feigenbaum and Feldman (eds.), Computers and Thought, McGraw-Hill, New York (1963). Reprinted again in [92], pp. 99–124.Google Scholar
  45. 45.
    Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systems I, in: Feferman, S., et. al. (eds.), Kurt Gödel: Collected Works, Volume I, Publications 1929–1936, pp. 144–195. (The translation, On formally undecidable propositions of Principia Mathematica and related systems I, appears on facing pages.) Oxford University Press, New York, and Clarendon Press, Oxford (1986).Google Scholar
  46. 46.
    Grigor’ev, D., and Vorobjov, N., Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5, 37–64, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Guard, J., Oglesby, F., Bennett, J., and Settle, L., Semi-automated mathematics, J ACM 16(l):49–62, 1969.zbMATHCrossRefGoogle Scholar
  48. 48.
    Harrison, J., and Théry, L.: Extending the HOL theorem-prover with a computer algebra system to reason about the reals, in Higher Order Logic Theorem-Proving and its Applications: 6 th International Workshop, HUG ‘93, pp. 174–184, Lecture Notes in Computer Science 780, Springer-Ver lag, Berlin Heidelberg New York (1993).Google Scholar
  49. 49.
    Harrison, J., Theorem-Proving with the Real Numbers, Springer-Verlag, Berlin Heidelberg New York (1998).zbMATHCrossRefGoogle Scholar
  50. 50.
    Hubert, D., Grundlagen der Geometrie, Teubner (1899). English translation (of the 10th edition, which appeared in 1962): Foundations of Geometry, Open Court, La Salle, Illinois (1987).Google Scholar
  51. 51.
    Hilbert, D., and Ackermann, W., Grundzüge der theoretischen Logik, 2nd edition (1938; first edition 1928). English translation: Principles of Mathematical Logic, translated by Lewis M. Hammond, George G. Leckie and F. Steinhardt; edited with notes by Robert E. Luce, Chelsea (1950). The translation is to be reprinted by the AMS in 2003.Google Scholar
  52. 52.
    Hong, H., Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination, in: Proc. International Symposium on Symbolic and Algebraic Computation, pp. 177–188, ACM, 1992. Reprinted in [28], pp. 210–210.Google Scholar
  53. 53.
    Horgan, J., The death of proof, Scientific American, October 1993, 74–82.Google Scholar
  54. 54.
    Huang, T., Automated Deduction in Ring Theory, Master’s Writing Project, Department of Computer Science, San Jose State University (2002).Google Scholar
  55. 55.
    G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science 1, 27–52, 1975.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Jacobsen, N., Basic Algebra I, (1985).Google Scholar
  57. 57.
    Kaltofen, E., Factorization of polynomials, in [24], pp. 95–114.Google Scholar
  58. 58.
    Kammüller, F., and Paulson, L., A formal proof of Sylow’s theorem: an experiment in abstract algebra with Isabelle HOL, J. Automated Reasoning 23:235–264, 1999.zbMATHCrossRefGoogle Scholar
  59. 59.
    Kapur, D., and Zhang, H., An overview of Rewrite Rule Laboratory (RRL), J. of Computer and Mathematics with Applications 29(2):91–114, 1995.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Kleene, S. C, A-definability and recursiveness, Duke Mathematical Journal 2:340–353, 1936.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Kleene, S. C, Introduction to Metamathematics, van Nostrand, Princeton (1952).Google Scholar
  62. 62.
    Knuth, D. E., and Bendix, P. B., Simple word problems in universal algebras, in: Leech, J. (ed)., Computational Problems in Abstract Algebras pp. 263–297, Pergamon Press (1970). Reprinted in [93], pp. 342–376.Google Scholar
  63. 63.
    Knuth, D.E., Seminumerical Algorithms: The Art of Computer Programming, Volume 2, second edition, Addison-Wesley, Reading, MA (1981).Google Scholar
  64. 64.
    Kurosh, A. G., The Theory of Groups, volume 1, Chelsea, New York (1955).Google Scholar
  65. 65.
    Lang, S. Algebra, Addison-Wesley, Reading, MA (1965).zbMATHGoogle Scholar
  66. 66.
    Lewis, Paul, Obituary of Herb Simon, http://www. es. oswego.edu/~blue/h.x/ courses/cogscil/s2001/section04/subsection01/main.html.
  67. 67.
    Mancuso, P., From Brouwer to Hilbert, Oxford University Press, Oxford (1998).Google Scholar
  68. 68.
    Maslov, S., Mints, G., and Orevkov, V., Mechanical proof-search and the theory of logical deduction in the USSR, in: [92], pp. 29–37.Google Scholar
  69. 69.
    Moore, G. E., Cramming more components onto integrated circuits, Electronics 38(8), April 18, 1965.Google Scholar
  70. 70.
    McCune, W., Otter 2.0, in: Stickel, M. E. (ed.), 10 th International Conference on Automated Deduction pp. 663–664, Springer-Verlag, Berlin Heidelberg New York (1990).CrossRefGoogle Scholar
  71. 71.
    McCune, W., Solution of the Robbins problem, J. Automated Reasoning 19(3):263–276, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    McCune, W., and Padmanabhan, R., Automated Deduction in Equational Logic and Cubic Curves, LNAI 1095, Springer-Verlag, Berlin Heidelberg New York (1996).zbMATHCrossRefGoogle Scholar
  73. 73.
    Monk, J. D., The mathematics of Boolean algebra, in the Stanford Dictionary of Philosophy, http://plato. Stanford.edu/entries/boolalg-math.
  74. 74.
    Newell, A., Shaw, J. C, Simon, H., Empirical explorations with the Logic Theory Machine: a case study in heuristics, Proceedings of the Western Joint Computer Conference, Institute of Radio Engineers, pp. 218–230, 1957. Reprinted in [92], pp. 49–74.Google Scholar
  75. 75.
    Peano, G., Arithmetices principia, nova methodo exposita, Bocea, Turin, (1889).Google Scholar
  76. 76.
    Pietrzykowski, T., and Jensen, D., A complete mechanization of second order logic, J. Assoc. Comp. Mach. 20(2):333–364, 1971.CrossRefGoogle Scholar
  77. 77.
    Pietrzykowski, T., and Jensen, D., A complete mechanization of -order type theory, Assoc. Comp. Math. Nat. Conf. 1972, 1:82–92.Google Scholar
  78. 78.
    Poincaré, H., Science and Method, translated by Maitland from the original French edition of 1908, Dover (1952).zbMATHGoogle Scholar
  79. 79.
    Penrose, R., The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics, American Philological Association (1989). See also the review by McCarthy, J., in Bulletin of the American Mathematical Society, October, 1990.Google Scholar
  80. 80.
    Penrose, R., Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford University Press, Oxford (1996). See also the critical reviews by McCarthy, J., in the electronic journal Psyche 2(11), 1995, http://psyche.cs.monash.edu.au/v2/psyche-2-11-mccarthy.html, and by Feferman, S., Psyche 2(7), 1995, http://psyche.cs.monash.edu.au/v2/psyche-2–07-feferman.html, and Penrose’s replies to these and other critics, at http://psyche.cs.monash.edu.au/v2/psyche-2–23-penrose.html.Google Scholar
  81. 81.
    Petkovsek, M., Wilf, H., and Zeilberger, D., A=B, A. K. Peters, Wellesley, MA (1996).Google Scholar
  82. 82.
    Presburger, M., Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Sparwozdanie z I Kongresu Matematykow Krajow Slowiańskich Warszawa, pp. 92–101, 1929.Google Scholar
  83. 83.
    Prior, A. N., Formal Logic, second edition, Clarendon Press, Oxford (1962).zbMATHGoogle Scholar
  84. 84.
    Renegar, J., Recent progress on the complexity of the decision problem for the reals, in: [28], pp. 220–241.Google Scholar
  85. 85.
    Richardson, D., Some unsolvable problems involving elementary functions of a real variable, J. Symbolic Logic 33:511–520 (1968).CrossRefGoogle Scholar
  86. 86.
    Robinson, A., Proving theorems, as done by man, machine, and logician, in Summaries of Talks Presented at the Summer Institute for Symbolic Logic, 1957 Second edition, published by Institute for Defense Analysis, 1960. Reprinted in [92], pp. 74–76.Google Scholar
  87. 87.
    Robinson, G., and Wos, L., Paramodulation and theorem-proving in first-order theories with equality, in Meltzer and Michie (eds.), Machine Intelligence 4:135–150, American Elsevier, New York (1969). Reprinted in [110], pp. 83–99.Google Scholar
  88. 89.
    Robinson, G., and Wos, L., Completeness of paramodulation, Journal of Symbolic Logic 34:160, 1969. Reprinted in [110], pp. 102–103.Google Scholar
  89. 89.
    Robinson, J. A., A machine oriented logic based on the resolution principle, JACM 12:23–41, 1965. Reprinted in [92], pp. 397–415.zbMATHCrossRefGoogle Scholar
  90. 90.
    Robinson, Alan, and Voronkov, A. (eds.),Handbook of Automated Reasoning, Volume I, MIT Press, Cambridge, and North-Holland, Amsterdam (2001).Google Scholar
  91. 91.
    Russell, B., and Whitehead, A. N., Principia Mathematica, Cambridge University Press, Cambridge, England. First edition (1910), second edition (1927), reprinted 1963.Google Scholar
  92. 92.
    Siekmann, J., and Wrightson, G. (eds), Automation of Reasoning 1: Classical Papers on Computational Logic 1957–1966, Springer-Verlag, Berlin Heidelberg New York (1983).Google Scholar
  93. 93.
    Siekmann, J., and Wrightson, G. (eds), Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970, Springer-Verlag, Berlin Heidelberg New York (1983).zbMATHGoogle Scholar
  94. 94.
    Quaife, A., Automated Development of Fundamental Mathematical Theories, Automated Reasoning, Vol. 2, Kluwer Academic Publishers, Dordrecht (1992).Google Scholar
  95. 95.
    Risch, R., The problem of integration in finite terms, Transactions of the AMS 139:167–189, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Risch, R., The solution of the problem of integration in finite terms, Bulletin of the AMS 76 605–608, 1970.MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Tarski, A., A decision method for elementary algebra and geometry. Report R-109, second revised edition, Rand Corporation, Santa Monica, CA, 1951. Reprinted in [28], pp. 24–84.zbMATHGoogle Scholar
  98. 98.
    Tarski, A., What is elementary geometry?, in: Henkin, L., Suppes, P, and Tarski, A. (eds.), Proceedings of an International Symposium on the Axiomatic Method, with Special Reference to Geometry and Physics 16–29, North-Holland, Amsterdam (1959).Google Scholar
  99. 99.
    Trybulec, W. A., Subgroup and cosets of subgroup, Journal of Formalized Mathematics 2, 1990. This is an electronic journal, published at http://mizar.uwb.edupl/JFM.
  100. 100.
    Turing, A., On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, series 2, 42:230–265, 1936–37.Google Scholar
  101. 101.
    Turing, A., Computing Machines and Intelligence, in MIND, A Quarterly Review of Psychology and Philosophy 59 (236) :433–460, October, 1950.MathSciNetCrossRefGoogle Scholar
  102. 102.
    van Heijenoort, J. (ed.) From Frege to Gödet A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA (1967).Google Scholar
  103. 103.
    Wang, H., Toward mechanical mathematics, 1960. Reprinted in [92], pp. 244–267.Google Scholar
  104. 104.
    Weispfenning, V., The complexity of linear problems in fields, J. Symbolic Computation 5:3–27, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Wiedijk, F., The fifteen provers of the world, to appear.Google Scholar
  106. 106.
    Winkler, F., Polynomial Algorithms in Computer Algebra, Springer-Verlag, Berlin Heidelberg New York (1996).zbMATHCrossRefGoogle Scholar
  107. 107.
    Wos, L., Robinson, C, and Carson, D., Efficiency and completeness of the set of support strategy in theorem-proving, JACM 12(4):536–541, 1965. Reprinted in [110], pp. 29–36.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Wos, L., The Automation of Reasoning: An Experimenter’s Notebook with OTTER Tutorial, Academic Press, San Diego (1996).Google Scholar
  109. 109.
    Wos, L., and Pieper, C, A Fascinating Country in the World of Computing, World Scientific, Singapore (1999).zbMATHGoogle Scholar
  110. 110.
    Wos, L., and Pieper, W., The Collected Works of Larry Wos, Volume I: Exploring the Power of Automated Reasoning, World Scientific, Singapore (2000).Google Scholar
  111. 111.
    Wos, L., and Pieper, W., The Collected Works of Larry Wos, Volume II: Applying Automated Reasoning to Puzzles, Problems, and Open Questions, World Scientific, Singapore (2000).CrossRefGoogle Scholar
  112. 112.
    Wos, L., Reflections on Automated Reasoning at Argonne: A Personalized Fragment of History, on the CD-ROM included with [109].Google Scholar
  113. 113.
    Wos, L., Ulrich, D, and Fitelson, B., XCB, the last of the shortest single axioms for the classical equivalential calculus, to appear in J. Automated Reasoning Google Scholar
  114. 114.
    Wu, Wen-Tsim, On the decision problem and the mechanization of theorem-proving in elementary geometry, Scientia Sinica 21(2), 1978. Reprinted in: Bledsoe, W. W., and Loveland, D. W. (eds.), Automated Theorem-Proving: After 25 Years, AMS, Providence, RI (1983).Google Scholar
  115. 115.
    Wu, Wen-Tsun, Mechanical Theorem Proving in Geometries: Basic Principles, Springer-Ver lag, Berlin Heidelberg New York (1994).zbMATHCrossRefGoogle Scholar
  116. 116.
    Yu, Y. Computer Proofs in Group Theory, Journal of Automated Reasoning 6 (3) :251–286, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Zhang, H., Automated proof of ring commutativity problems by algebraic methods, J. Symbolic Computation 9:423–427, 1990.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael J. Beeson
    • 1
  1. 1.Department of Computer ScienceSan José State UniversityUSA

Personalised recommendations