Watching the Daisies Grow: Turing and Fibonacci Phyllotaxis

  • Jonathan Swinton


Turing’s seminal 1952 paper on morphogenesis is widely known. Less well known is that he spent the last few years of his life further developing his morphogenetic theory and using the new computer to generate solutions to reaction-diffusion systems. Among other things, he claimed at one point to be able to explain the phenomenon of “Fibonacci phyllotaxis”: the appearance of Fibonacci numbers in the structures of plants. He never published this work, but did leave a nearly complete manuscript on morphogenesis and lattice phyllotaxis, together with more fragmentary notes on Fibonacci phyllotaxis. I discuss evidence that he developed a number of key ideas close to modern thinking, and tantalising hints that he came very close to a mathematical explanation of how the “daisy grows” into these patterns.


Fibonacci Number Turing Instability Biological Pattern Formation Fibonacci Series Bifurcation Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Adler, D. Barabe, and R. V. Jean. A history of the study of phyllotaxis. Annals of Botany, 80:231–244, 1997.CrossRefGoogle Scholar
  2. 2.
    W. Allaerts. Fifty years after Alan M. Turing. An extraordinary theory of morphogenesis. Belgian Journal of Zoology, 133(1) :3–14, 1972.Google Scholar
  3. 3.
    P. Atela, C. Gole, and S. Hotton. A dynamical system for plant pattern formation: a rigorous analysis. Journal of Nonlinear Science, 12:641–676, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. M. Bennett. Ferranti recollections (1950–1965). IEEE Annals of the History of Computing, 18(3):65, 1996.Google Scholar
  5. 5.
    A. Braun. Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blattstellungen Überhaupt. Verhandlung der Kaiserlichen Leopoldinsche-Carolinsched Akademie der Naturforschung, 15:195–402, 1831.Google Scholar
  6. 6.
    L. Bravais and A. Bravais. Essai sur la disposition des feuilles curviseriees. Annales des Sciences Naturelles Botanique, 7 and 8:42–110; 193–221; 11–42, 1837.Google Scholar
  7. 7.
    A. H. Church. On the Relation of Phyllotaxis to Mechanical Laws. Williams and Norgate, London, 1904.Google Scholar
  8. 8.
    H. S. M. Coxeter. The role of intermediate convergents in Tait’s explanation for phyllotaxis. Journal of Algebra, 20:167–172, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Douady and Y. Couder. Phyllotaxis as a dynamical self organizing process (part I, II, III). Journal of Theoretical Biology, 178:255–274; 275–294; 295–312, 1996.CrossRefGoogle Scholar
  10. 10.
    A. Hodges. Alan Turing: The Enigma. Vintage, London, 1992.Google Scholar
  11. 11.
    R. V. Jean. Phyllotaxis: a systematic study in plant morphogenesis. Cambridge University Press, Cambridge, UK, 1994.CrossRefGoogle Scholar
  12. 12.
    R. V. Jean and D. Barabe. Symmetry in Plants. World Scientific, 1998.zbMATHGoogle Scholar
  13. 13.
    E. Fox Keller. Making Sense of Life. Harvard University Press, 2002.Google Scholar
  14. 14.
    A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov. Etude de l’equation de la diffusion avec croissance de la quantite de matiere et son application a un Problème biologique. Bulletin Universite d’Etat a Moscou (Bjul. Moskowskogo Gos. Univ.), Serie Internationale, Sect. A 1:1–26, 1937.Google Scholar
  15. 15.
    M. Kunz and F. Rothen. Phyllotaxis or the properties of spiral lattices III. An algebraic model of morphogenesis. J Phys I France, 2:2131–2172, 1992.CrossRefGoogle Scholar
  16. 16.
    L. S. Levitov. Energetic approach to phyllotaxis. Europhysics Letters, 14(6):535–539, 1991.CrossRefGoogle Scholar
  17. 17.
    H. Meinhardt. Models of biological pattern formation. Academic Press, London, UK, 1982.Google Scholar
  18. 18.
    G. J. Mitchison. Phyllotaxis and the Fibonacci series. Science, 196:270–275, 1977.CrossRefGoogle Scholar
  19. 19.
    J. Murray. Mathematical Biology. Springer-Verlag, Berlin Heidelberg New York, 1993.zbMATHCrossRefGoogle Scholar
  20. 20.
    V. Nanjundiah. Alan Turing and ‘the chemical basis of morphogenesis’. In T. Sekimura, editor, Morphogenesis and Pattern Formation in Biological Systems. Springer-Verlag, Tokyo, Japan, 2003.Google Scholar
  21. 21.
    M. H. A. Newman. Alan Mathison Turing. Biographical Memoirs of the Royal Society, 1:253–263, 1955.CrossRefGoogle Scholar
  22. 22.
    N. Rashevsky. Advances and Application of Mathematical Biology. University of Chicago Press, Chicago, 1940.Google Scholar
  23. 23.
    B. Richards. The Manchester Mark I: The Turing-Richards Era. In Conference: “Computers in Europe. Past, Present and Future”, Kiev, October 5–9 1998. Scholar
  24. 24.
    F. J. Richards. The Geometry of Phyllotaxis and its Origin. Symposium of the Society for Experimental Biology, 2:217–245, 1948.Google Scholar
  25. 25.
    P. T. Saunders, editor. Collected Works of A. M. Turing: Morphogenesis. North-Holland, Amsterdam, 1992.Google Scholar
  26. 26.
    C. F. Schimper. Beschreibung des Symphytum Zeyheri und seiner zwei deutschen Verwandten der S. buoborum Schimper und S. tuberosum. Geiger’s Magazin für Pharmacie, 29:1–92, 1831.Google Scholar
  27. 27.
    J. Swinton. Web-site: Turing and morphogenesis., 2003.
  28. 28.
    D. W. Thompson. On Growth and Form. Cambridge University Press, Cambridge, UK, 1961.Google Scholar
  29. 29.
    A. M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, B 237:37–72, 1952.CrossRefGoogle Scholar
  30. 30.
    A. M. Turing. The morphogen theory of phyllotaxis. In Saunders [25].Google Scholar
  31. 31.
    G. van Iterson. Mathematische und Microscopisch-Anatomische Studien über Blattsteilungen, nebst Betraschung über den Schalebau der Milionen. Gustav-Fischer Verlag, Jena, 1907.Google Scholar
  32. 32.
    A. H. Veen and A. Lindenmayer. Diffusion mechanism for phyllotaxy. Plant Physiology, 60:127–139, 1977.CrossRefGoogle Scholar
  33. 33.
    C. H. Waddington. Towards a theoretical biology, An IUBS symposium, Villa Serbelloni, 1968, Volume 3. Drafts. Aldine, Chicago, 1970.Google Scholar
  34. 34.
    C. W. Wardlaw. A commentary on Turing’s diffusion-reaction theory of morphogenesis. New Phytologist, 52:40–47, 1953.CrossRefGoogle Scholar
  35. 35.
    C. W. Wardlaw. Evidence relating to the diffusion-reaction theory of morphogenesis. New Phytologist, 54:39–49, 1954.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jonathan Swinton

There are no affiliations available

Personalised recommendations