Advertisement

Robots and Rule-Following

  • Diane Proudfoot
Chapter

Summary

Turing was probably the first person to advocate the pursuit of robotics as a route to Artificial Intelligence and Wittgenstein the first to argue that, without the appropriate history, no machine could be intelligent. Wittgenstein anticipated much recent theorizing about the mind, including aspects of connectionist theories of mind and the situated cognition approach in AI. Turing and Wittgenstein had a wary respect for each other and there is significant overlap in their work, in both the philosophy of mathematics and the philosophy of AI. Both took (what would now be called) an externalist stance with respect to machine intelligence. But whereas Turing was concerned only with behaviour, Wittgenstein emphasized in addition history and environment. I show that Wittgenstein’s externalist analysis of psychological capacities entails that most, even all, future “artificially intelligent” computers and robots will not use language, possess concepts, or reason. The argument tells, not against AI, but only against AI’s traditional and romantic goal of building an artificial “res cogitans” — as first embraced by Turing and now exemplified in the work of Brooks and others on cognitive robotics. This argument supports the stance of the growing number of AI researchers whose aim is to produce, not thinking and understanding machines, but high-performance “advanced information processing systems.”

Keywords

Turing Machine Humanoid Robot Turing Test Artificial Intelligence System Chinese Room 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ambrose (1935). Finitism in mathematics (I and II). Mind, 35:186–203, 317–340.CrossRefGoogle Scholar
  2. 2.
    G. E. M. Anscombe (1978). Rules, rights and promises. Midwest Studies in Philosophy, 3:318–323.CrossRefGoogle Scholar
  3. 3.
    V. Braitenberg (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA.Google Scholar
  4. 4.
    R. A. Brooks (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6:3–15.CrossRefGoogle Scholar
  5. 5.
    R. A. Brooks (1991). Intelligence without representation. Artificial Intelligence, 47:139–159.CrossRefGoogle Scholar
  6. 6.
    R. A. Brooks (1994). Coherent behaviour from many adaptive processes. In D. Cliff et ai., eds, From Animals to Animats, volume 3. MIT Press, Cambridge, MA.Google Scholar
  7. 7.
    R. A. Brooks (1995). Intelligence without reason. In L. Steels and R. A. Brooks, eds, The Artificial Life Route to Artificial Intelligence. Lawrence Erl-baum, Hillsdale, NJ.Google Scholar
  8. 8.
    R. A. Brooks (1999). Cambrian Intelligence: The Early History of the New AI. Bradford Books, Cambridge, MA.zbMATHGoogle Scholar
  9. 9.
    R. A. Brooks, C. Breazeal, R. Irie, C. C. Kemp, M. Marjanovic, B. Scassellati, and M. M. Williamson (1998). Alternative essences of intelligence. In Proceedings of the Fifteenth National Conference on ArtiGcial Intelligence (AAAI-98). AAAI Press, Maddison, WI.Google Scholar
  10. 10.
    R. A. Brooks and A. M. Flynn (1989). Fast, cheap, and out of control. Technical report, Massachusetts Institute of Technology Artificial Intelligence Laboratory. Memo 1182.Google Scholar
  11. 11.
    R. A. Brooks and L. A. Stein (1994). Building brains for bodies. Autonomous Robots, 1:7–25.CrossRefGoogle Scholar
  12. 12.
    A. Clark (1997). Being There. MIT Press, Cambridge, MA.Google Scholar
  13. 13..
    A. Clark and D. Chalmers (1998). The extended mind. Analyst, 4(5).Google Scholar
  14. 14.
    B. J. Copeland and D. Proudfoot (1996). On Alan Turing’s anticipation of connectionism. Synthese, 108:361–377.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    B. J. Copeland and D. Proudfoot (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280(4):76–81.CrossRefGoogle Scholar
  16. 16.
    D. C. Dennett (1978). Why you can’t make a computer that feels pain. In D. C. Dennett, Brainstorms. Bradford Books, Montgomery, VT.Google Scholar
  17. 17.
    D. C. Dennett (1994). The practical requirements for making a conscious robot. Philosophical Transactions of the Royal Society of London, 349:133–146.Google Scholar
  18. 18.
    D. C. Dennett (1997). When HAL kills, who’s to blame? Computer ethics. In D. G. Stork, ed., Hal’s Legacy: 2001’s Computer as Dream and Reality. MIT Press, Cambridge, MA.Google Scholar
  19. 19.
    H. L. Dreyfus (1992). What Computers Still Can’t Do. MIT Press, Cambridge, MA.Google Scholar
  20. 20.
    J. A. Fodor (1975). The Language of Thought. Crowell, New York.Google Scholar
  21. 21.
    K. Furukawa, D. Michie, and S. Muggleton, eds (1999). Machine Intelligence, volume 15. Oxford University Press, New York.Google Scholar
  22. 22.
    P. M. S. Hacker (1990). Wittgenstein, Meaning and Mind. Blackwell, Oxford.Google Scholar
  23. 23.
    J. Haugeland (1985). Artificial Intelligence: The Very Idea. Bradford Books, Cambridge, MA.Google Scholar
  24. 24.
    A. Hodges (1992). Alan Turing: The Enigma. Vintage, London.Google Scholar
  25. 25.
    D. Hofstadter (1980). Gödel, Escher, Bach: An Eternal Golden Braid. Penguin Books, Marmondsworth.Google Scholar
  26. 26.
    D. W. Hogg, F. Martin, and M. Resnick (1991). Braitenberg creatures. Epis-temology and learning. Memo #13. MIT Media Laboratory.Google Scholar
  27. 27.
    R. Kirk (1994). The trouble with ultra-externalism. Proceedings of the Aristotelian Society, 94:293–307.Google Scholar
  28. 28.
    S. Kripke (1982). Wittgenstein on Rules and Private Language: An Elementary Exposition. Blackwell, Oxford.Google Scholar
  29. 29.
    R. Kurzweil (1999). The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Viking Press, New York.Google Scholar
  30. 30.
    J. McClelland (1987). The basis of lawful behaviour: rules or connections? The Computers and Philosophy Newsletter, 2:10–16.Google Scholar
  31. 31.
    B. Meltzer and D. Michie, eds (1969). Machine Intelligence, volume 5. Edinburgh University Press.zbMATHGoogle Scholar
  32. 32.
    R. G. Millikan (1990). Truth rules, hoverflies, and the Kripke-Wittgenstein paradox. Philosophical Review, 99:323–354.CrossRefGoogle Scholar
  33. 33.
    M. Nedo and M. Ranchetti (1983). Wittgenstein: Sein Leben in Bildern und Texten. Suhrkamp Verlag, Frankfurt am Main.Google Scholar
  34. 34.
    A. Newell (1980). Physical symbol systems. Cognitive Science, 4:135–183.CrossRefGoogle Scholar
  35. 35.
    A. Newell and H. Simon (1981). Computer science as empirical inquiry: Symbols and search. In J. Haugeland, ed., Mind Design. Bradford Books, Cambridge, MA.Google Scholar
  36. 36.
    D. Proudfoot (1997). On Wittgenstein on cognitive science. Philosophy, 72:189–217.CrossRefGoogle Scholar
  37. 37.
    D. Proudfoot (1999). How human can they get? Science, 284:745.CrossRefGoogle Scholar
  38. 38.
    D. Proudfoot (2002). Wittgenstein’s anticipation of the Chinese room. In M. Preston and J. Bishop, eds, Views into the Chinese Room. Oxford University Press.Google Scholar
  39. 39.
    C. Teuscher (2002). Turing’s Connectionism. An Investigation of Neural Network Architectures. Springer-Verlag, London.Google Scholar
  40. 40.
    A. M. Turing (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:230–265, 1936–37.MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. M. Turing (1948). Intelligent machinery. National Physical Laboratory Report. In Metzer and Michie [31]. A digital facsimile of the original typescript is in The Turing Archive for the History of Computing, http://www.AlanTuring.net/intelligent_machinery.Google Scholar
  42. 42.
    A. M. Turing (1950). Computing machinery and intelligence. Mind, 59:433–460.MathSciNetCrossRefGoogle Scholar
  43. 43.
    A. M. Turing (1951). Intelligent machinery: a heretical view. In S. Turing Alan M. Turing. Heffer & Sons, Cambridge.Google Scholar
  44. 44.
    A. M. Turing (1952). Can automatic calculating machines be said to think? In Furukawa et al. [21] (edited by B. J. Copeland).Google Scholar
  45. 45.
    S. Turing (1959). Alan M. Turing. Heffer & Sons, Cambridge.Google Scholar
  46. 46.
    T. van Gelder (1995). What might cognition be, if not computation? Journal of Philosophy, 91:345–381.CrossRefGoogle Scholar
  47. 47.
    T. van Gelder (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21:615–628.Google Scholar
  48. 48.
    J. Weizenbaum (1976). Computer Power and Human Reason: From Judgement to Calculation. W. H. Freeman, San Francisco.Google Scholar
  49. 49.
    L. Wittgenstein (1953). Philosophical Investigations. Blackwell, Oxford. Translated by G. E. M. Anscombe.Google Scholar
  50. 50.
    L. Wittgenstein (1965). The Blue and Brown Books. Harper, New York.Google Scholar
  51. 51.
    L. Wittgenstein (1967). Remarks on the Foundations of Mathematics. Black-well, Oxford, 2nd edition. Edited by G. H. von Wright, R. Rhees, and G. E. M. Anscombe. Translated by G. E. M. Anscombe.Google Scholar
  52. 52.
    L. Wittgenstein (1967). Zettel. Blackwell, Oxford. Edited by G. E. M. Anscombe and G. H. von Wright. Translated by G. E. M. Anscombe.Google Scholar
  53. 53.
    L. Wittgenstein (1976). Wittgenstein’s Lectures on the Foundations of Mathematics, Cambridge, 1939. Cornell University Press, Ithaca, NY. Edited by C. Diamond.Google Scholar
  54. 54.
    M. Yamamoto (1993). “SOZZY”: A hormone-driven autonomous vacuum cleaner. Proceedings of the International Society for Optical Engineering, 2058:211–222.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Diane Proudfoot
    • 1
  1. 1.Philosophy DepartmentUniversity of CanterburyNew Zealand

Personalised recommendations