A Note on Enjoying Strawberries with Cream, Making Mistakes, and Other Idiotic Features

  • Helmut Schnelle


Turing’s precise notion of computation implies three types of constraints: (1) sub-computational constraints requiring error-free components of the machines, (2) con-computational constraints according to which the machines are not influenced by situational distraction, and (3) trans-computational limits (in Gödel’s sense). In contrast, human thought is not marked by these constraints and limitations. This is discussed with reference to thoughts of von Neumann and Weyl, Carnap and Bar-Hillel and, finally, Gödel and Wang.


Turing Machine Intuitionistic Logic Human Thought Universal Turing Machine Imitation Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Bar-Hillel (1970). Argumentation in pragmatic languages. In: Y. Bar-Hillel. Aspects of Language. Jerusalem: The Magnes Press, Chap. 17.Google Scholar
  2. 2.
    Y. Bar-Hillel (1970). Communication and argumentation in pragmatic languages. In: Linguaggi nella società e nella tecnica. Milano: Edizioni di comunità, pp. 269–284.Google Scholar
  3. 3.
    D. C. Dennett (1995). Darwins Dangerous Idea. New York, NY: Touchstone.Google Scholar
  4. 4.
    G. M. Edelman (1987). Neural Darwinism. The Theory of Neuronal Group Selection. New York, NY: Basic Books, 1987.Google Scholar
  5. 5.
    G. M. Edelman (1989). The Remembered Present. New York, NY: Basic Books.Google Scholar
  6. 6.
    H. Schnelle (1988). Turing naturalized. Von Neumann’s unfinished project. In: R. Herken (ed.) The Universal Turing Machine. A Half-Century Survey. Oxford: Oxford University Press, pp. 539–559.Google Scholar
  7. 7.
    Turing A. M. (1936–7). On computable numbers, with an application to the Entscheidungsproblem, Proc. London Maths. Soc., ser. 2, 42, 230–265; also in M. Davis, (ed.) The Undecidable (Raven, New York, 1965), and in [10].MathSciNetGoogle Scholar
  8. 8.
    Turing A. M. (1950). Computing machinery and intelligence, Mind 49, 433–460, reprinted in [9].MathSciNetCrossRefGoogle Scholar
  9. 9.
    Turing, A. M. (1992). Collected Works: Mechanical Intelligence. D. C. Ince, ed., Amsterdam, NL: North-Holland.zbMATHGoogle Scholar
  10. 10.
    Turing, A. M. (2001). Collected Works: Mathematical Logic. R. O. Gandy and C. E. M. Yates, eds., Amsterdam, NL: North-Holland.Google Scholar
  11. 11.
    J. Von Neumann (1956). Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: C. E. Shannon and J. McCarthy (eds.) Automata Studies. Princeton, NJ: Princeton University Press, pp. 43–98.Google Scholar
  12. 12.
    J. von Neumann (1958). The Computer and the Brain. New Haven: Yale University Press.zbMATHGoogle Scholar
  13. 13.
    H. Wang (1987). Reflections on Kurt Gödel. Cambridge, MA: MIT Press.Google Scholar
  14. 14.
    H. Wang (1996). A Logical Journey. From Gödel to Philosophy. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  15. 15.
    H. Weyl (1949). The Philosophy of Mathematics and Natural Science. Princeton, NJ: Princeton University Press.Google Scholar
  16. 16.
    H. Weyl (1968). Gesammelte Abhandlungen. Band II (K. Chandrasekharan, Ed.) Berlin Heidelberg: Springer-Verlag.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Helmut Schnelle
    • 1
  1. 1.Ruhr-Universität BochumGermany

Personalised recommendations