Skip to main content

Remodelling of the Host Cell RNA Splicing Machinery During an Adenovirus Infection

  • Chapter
Adenoviruses: Model and Vectors in Virus-Host Interactions

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

Adenovirus makes extensive use of RNA splicing to produce a complex set of spliced mRNAs during virus replication. All transcription units, except pIX and IVa2, encode multiple alternatively spliced mRNAs. The accumulation of viral mRNAs is subjected to a temporal regulation, a mechanism that ensures that proteins that are needed at certain stages of the viral life cycle are produced. The complex interaction between host cell RNA splicing factors and viral regulatory elements has been studied intensely during the last decade. Such studies have begun to produce a picture of how adenovirus remodels the host cell RNA splicing machinery to orchestrate the shift from the early to the late profile of viral mRNA accumulation. Recent progress has to a large extent focused on the mechanisms regulating E1A and Ll alternative splicing. Here we will review the current knowledge of cis-acting sequence element, trans-acting factors and mechanisms controlling E1A and L1 alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axusjärvi G and Persson H (1981) Controls of RNA splicing and termination in the major late adenovirus transcription unit. Nature 292: 420–426

    Article  Google Scholar 

  • Akusjärvi G, Pettersson U and Roberts RI (1986) Structure and function of the adenovirus-2 genome. In: Doerfler W (ed) Adenovirus DNA: the viral genome and its expression. Martin Nijhoff Publishing, Oxford 8: 53–95

    Google Scholar 

  • Aspegren A, Rabino C and Bridge E (1998) Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition. Exp Cell Res 245: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Berget SM, Moore C and Sharp PA (1977) Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74: 3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ AND Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    Google Scholar 

  • E4 open reading frame 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J Virol 70:3844–3851

    Google Scholar 

  • Bourgeois CF, Popielarz M, Hildwein G and Stévenin J (1999) Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5’ or 3’ splice site activation. Mol Cell Biol 19 7347–7356

    PubMed  CAS  Google Scholar 

  • Bridge E, Riedel KU, Johansson BM and Pettersson U (1996) Spliced exons of adenovirus late RNAs colocalize with snRNP in a specific nuclear domain. J Cell Biol 135: 303–314

    Article  PubMed  CAS  Google Scholar 

  • Bridge E,Xia DX, Carmo-Fonseca M, Cardinali B, Lamond AI and Pettersson U (1995) Dynamic organization of splicing factors in adenovirus-infected cells. J Virol 69: 281–290

    PubMed  CAS  Google Scholar 

  • Brockmann D, Tries B and Esche H (1990) Isolation and characterization of novel adenovirus type 12 E1A mRNAs by cDNA PCR technique. Virology 179: 585–590

    Article  PubMed  CAS  Google Scholar 

  • Bruni R and Roizman B (1996) Open reading frame P–A herpes simplex virus gene repressed during productive infection encodes a protein that binds a splicing factor and reduces synthesis of viral proteins made from spliced mRNA. Proc Natl Acad Sci USA 93: 10423–10427

    Article  PubMed  CAS  Google Scholar 

  • Bryant HE, Matthews DA, Wadd S, Scott JE, Kean J, Graham S, Russell WC and Clements JB (2000) Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32. J Virol 74: 11322–11328

    Article  PubMed  CAS  Google Scholar 

  • Burd CG AND Dreyfuss G (1994) RNA binding specificity of hnRNP Al: significance of hnRNP Al high-affinity binding sites in pre-mRNA splicing. EMBO J 13: 11971204

    Google Scholar 

  • Burge CB, Tuschl T and Sharp P (1998) Splicing of precursors to mRNAs by the spliceosome. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, Second edition. Cold Spring Harbor Press, Cold Spring Harbor NY, pp 525–560: 525–560

    Google Scholar 

  • Caceres JF, Stamm S, Helfman DM and Krainer AR (1994) Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265: 1706–1709

    Article  PubMed  CAS  Google Scholar 

  • Cavaloc Y, Bourgeois CF, Kister L and Stevenin J (1999) The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA 5: 468–483

    Article  PubMed  CAS  Google Scholar 

  • ChambonP (1977) Summary: The molecular biology of the eukaryotic genome is coming of age. Cold Spring Harbor Symposium Series, Vol. XLII, Cold Spring Harbor Press, Cold Spring Harbor NY, Vol. XLII: pp 1209–1234

    Google Scholar 

  • ChebliK, GattoniR, SchmittP, HildweinG and SteveninJ (1989) The 216-

    Google Scholar 

  • nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol Cell Biol 9:4852–4861

    Google Scholar 

  • ChenMR, YangJF, WuCW, MiddeldorpJM and ChenJY (1998) Physical association between the EBV protein EBNA-1 and P32/TAP/hyaluronectin. J Biomed Sci 5: 173–179

    Article  PubMed  CAS  Google Scholar 

  • ChowLT and BrokerTR (1978) The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell 15: 497–510

    Article  PubMed  CAS  Google Scholar 

  • ChowLT, BrokerTR and LewisJB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134: 265–303

    Article  PubMed  CAS  Google Scholar 

  • ChowLT, GelinasRE, BrokerTR and RobertsRJ (1977) An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell 12: 1–8

    Article  PubMed  CAS  Google Scholar 

  • CroneDE and KeeneJD (1989) Viral transcription is necessary and sufficient for vesicular stomatitis virus to inhibit maturation of small nuclear ribonucleoproteins. J Virol 63: 4172–4180.

    PubMed  CAS  Google Scholar 

  • DauksaiteV and AkusjärviG (2002) Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing. J Biol Chem 277: 12579–12586

    Article  PubMed  CAS  Google Scholar 

  • DelsertC, MorinN and KlessigDF (1989) cis-acting elements and a trans-acting factor affecting alternative splicing of adenovirus L1 transcripts. Mol Cell Biol 9: 4364–4371

    Google Scholar 

  • DuncanPI, StojdlDF, MariusRM and BellJC (1997) In vivo regulation of alter- native pre-mRNA splicing by the Clkl protein kinase. Mol Cell Biol 17: 5996–6001

    PubMed  CAS  Google Scholar 

  • DunnAR and HassellJA (1977) A novel method to map transcripts: evidence for homology between an adenovirus mRNA and discrete multiple regions of the viral genome. Cell 12: 23–36

    Article  PubMed  CAS  Google Scholar 

  • Estmer Nilsson C, Petersen-Mahrt S, Durot C, Shtrichman R, Krainer AR

    Google Scholar 

  • KleinbergerT and AkusjärvI G (2001) The adenovirus E4–ORF4 splicing enhanc- er protein interacts with a subset of phosphorylated SR proteins. EMBO J 20: 864–871

    Article  PubMed  Google Scholar 

  • FlintSJ, EnquistLW, KrugRM, RacanielloVR and SkalkaAM (2000) The

    Google Scholar 

  • principles of Virology; Molecular Biology, Pathogenesis and Control. ASM Press, Washington, DC

    Google Scholar 

  • FuXD (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680

    PubMed  CAS  Google Scholar 

  • Gama-CarvalhoM, KraussRD, ChiangL, ValcarcelJ, GreenMR and Carmo-

    Google Scholar 

  • FonsecaM (1997) Targeting of U2AF65 to sites of active splicing in the nucleus. J Cell Biol 137: 975–987

    Article  Google Scholar 

  • GattoniR, ChebliK, HimmelspachM and StéveninJ (1991) Modulation of alter-

    Google Scholar 

  • native splicing of adenoviral EIA transcripts: factors involved in the early-to-late transition. Genes Dev 5:1847–1858

    Google Scholar 

  • GattoniR, SchmittP and StéveninJ (1988) In vitro splicing of adenovirus E1A

    Google Scholar 

  • transcripts: characterization of novel reactions and of multiple branch points far from the 3’ splice site. Nucleic Acids Res 16:2389–2409

    Google Scholar 

  • Ge H and Manley JL (1990) A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Graveley BB (2000) Sorting out the complexity of SR protein functions. RNA 6: 11971211

    Google Scholar 

  • Gut Jf, Lane WS and Fu XD (1994) A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369: 678–682

    Article  Google Scholar 

  • Gustin KE and Imperiale MJ (1998) Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J Virol 72: 7860–7870

    PubMed  CAS  Google Scholar 

  • Harper JE and Manley JL (1992) Multiple activities of the human splicing factor ASF. Gene Expr 2: 19–29

    PubMed  CAS  Google Scholar 

  • Himmelspach M, Cavaloc Y, Chebli K, Stévenin J and Gattoni R (1995) Titration

    Google Scholar 

  • of serine/arginine (SR) splicing factors during adenoviral infection modulates ElA pre-mRNA alternative splicing. RNA 1:794–806

    Google Scholar 

  • Hrimech M, Yao XJ, Branton PE and Cohen EA (2000) Human immunodeficiency virus type 1 Vpr-mediated G(2) cell cycle arrest: Vpr interferes with cell cycle signaling cascades by interacting with the B subunit of serine/threonine protein phosphatase 2 A. EMBO J 19: 3956–3967

    Article  PubMed  CAS  Google Scholar 

  • Huang T-S, Estmer-Nilsson C, Punga T and Akusjärvi G (2002) Functional inacti-

    Google Scholar 

  • vation of the SR family of splicing factors during a vaccinia virus infection. EMBO reports 3:1088–1093

    Google Scholar 

  • Imperiale M, Akusjärvi G and Leppard K (1995) Post-transcriptional control of adenovirus gene expression. In: Doerfler W and Böhm P (eds) Current Topics in Microbiology and Immunology. Springer Verlag, Vol. 199/II, pp 139–171

    Google Scholar 

  • Johnston JM, Anderson KP and Klessig DF (1985) Partial block to transcription of human adenovirus type 2 late genes in abortively infected monkey cells. J Virol 56: 378–385

    PubMed  CAS  Google Scholar 

  • KANOPKA A, MÜHLEMANN O AND AKUSJÄRVI G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature, 381: 535–538

    CAS  Google Scholar 

  • Kanopka A, Mühlemann O, Petersen-Mahrt S, Estmer C, Öhrmalm C and

    Google Scholar 

  • Akusjärvi G (1998) Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393: 185–187

    Article  PubMed  Google Scholar 

  • Kleinberger T and Shenk T (1993) Adenovirus E4orf4 protein binds to protein phosphatase-2 A, and the complex down regulates E1A-enhanced junB transcription. J Virol 67: 7556–7560

    PubMed  CAS  Google Scholar 

  • Klessig DF (1977) Two adenovirus mRNAs have a common 5’ terminal leader sequence encoded at least 10 kb upstream from their main coding regions. Cell 12: 9–21

    Article  PubMed  CAS  Google Scholar 

  • Kornitzer D, Share R and Kleinberger T (2001) Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol 154: 331–344

    Article  PubMed  CAS  Google Scholar 

  • Krainer AR, Conway GC and Kozak D (1990) The essential pre-mRNA splicing factor SF2 influences 5’ splice site selection by activating proximal sites. Cell 62: 35–42

    Article  PubMed  CAS  Google Scholar 

  • Kreivi J-P and Akusjärvi G (1994) Regulation of adenovirus alternative RNA splicing at the level of commitment complex formation. Nucleic Acids Res 22: 332–337

    Article  PubMed  CAS  Google Scholar 

  • Kreivi J-P, Zerivitz K and Akusjärvi G (1991) Sequences involved in the control of

    Google Scholar 

  • adenovirus L alternative RNA splicing. Nucleic Acids Res 19:2379–2386

    Google Scholar 

  • Larsson S, Kreivi J-P and Akusjärvi G (1991) Control of adenovirus alternative

    Google Scholar 

  • RNA splicing: effect of viral DNA replication on splice site choice. Gene 107:219–227

    Google Scholar 

  • Lerga A, Hallier M, Delva L, Orvain C, Gallais I, Marie J and Moreau-Gachelin

    Google Scholar 

  • F (2001) Identification of an RNA binding specificity for the potential splicing factor TLS. J Biol Chem 276: 6807–6816

    Google Scholar 

  • Lu X, Timchenko NA and Timchenko LT (1999) Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum Mol Genet 8: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Yu H and Peterlin BM (1994) Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. J Virol 68: 3850–3856

    CAS  Google Scholar 

  • Mandel JL (1989) Dystrophin: The gene and its product. Nature 339:584–586 Manley JL, Sharp PA and Gefter ML (1979) RNA synthesis in isolated nuclei:

    Google Scholar 

  • identification and comparison of adenovirus 2 encoded transcripts synthesized in

    Google Scholar 

  • vitro and vivo. J Mol Biol 135:171–197

    Google Scholar 

  • Manley JL and Tacke R (1996) SR proteins and splicing control. Genes & Dev 10: 1569–1579

    Article  CAS  Google Scholar 

  • Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G and Branton PE (1998)

    Google Scholar 

  • The early region 4 orf4 protein of human adenovirus type 5 induces p53- independent cell death by apoptosis. J Virol 72:7144–7153

    Google Scholar 

  • Matthews DA and Russell WC (1998) Adenovirus core protein V interacts with p32-a protein which is associated with both the mitochondria and the nucleus. J Gen Virol 79: 1677–1685

    PubMed  CAS  Google Scholar 

  • Mayeda A and Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP Al and splicing factor SF2. Cell 68: 365–375

    Article  PubMed  CAS  Google Scholar 

  • Mermoud JE, COHEN PT and Lamond AI (1994) Regulation of mammalian spliceo-

    Google Scholar 

  • some assembly by a protein phosphorylation mechanism. EMBO J 13:5679–5688 Misteli T (1999) RNA splicing: What has phosphorylation got to do with it? Curr

    Google Scholar 

  • Biol 9:198–200

    Google Scholar 

  • Molin M, Bouakas L, Berenjian S and Akusjärvi G (2002) Unscheduled expression

    Google Scholar 

  • of capsid protein IIIa results in defects in adenovirus major late mRNA and protein expression. Virus Res 83 197–206

    Google Scholar 

  • Muller U, Kleinberger T and Shenk T (1992) Adenovirus E4orf4 protein reduces phosphorylation of c-Fos and E1A proteins while simultaneously reducing the level of AP-1. J Virol 66: 5867–5878

    PubMed  CAS  Google Scholar 

  • Mühlemann O, Kreivi J-P and Akusjärvi G (1995) Enhanced splicing of nonconsensus 3’ splice sites late during adenovirus infection. J Virol 69: 7324–7327

    PubMed  Google Scholar 

  • Mühlemann O, Yue BG, Petersen-Mahrt S and Akusjärvi G (2000) A novel type

    Google Scholar 

  • of splicing enhancer regulating adenovirus pre-mRNA splicing. Mol Cell Biol 20: 2317–2325

    Google Scholar 

  • Nevins JR and Wilson MC (1981) Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing. Nature 290: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL and

    Google Scholar 

  • Roberts TM (1990) Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2 A. Cell 60: 167–176

    Article  PubMed  Google Scholar 

  • Perricaudet M, Akusjärvi G, Virtanen A and Pettersson U (1979) Structure of

    Google Scholar 

  • two spliced mRNAs from the transforming region of hmna subgroup C adenoviruses. Nature 281:694–696

    Google Scholar 

  • Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC and

    Google Scholar 

  • Akusjärvi G (1999) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18: 1014–1024

    Article  PubMed  Google Scholar 

  • Philips AV, Timchenko LT and Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280: 737–741

    Article  PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J and Shenk T (1986) The adenovirus E1B-55 K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Popielarz M, Gattoni R and Stevenin J (1993) Contrasted cis-acting effects of downstream 5’ splice sites on the splicing of a retained intron: the adenoviral E1A pre-mRNA model. Nucleic Acids Res 21: 5144–5151

    Article  PubMed  CAS  Google Scholar 

  • Prasad J, Colwill K, Pawson T and Manley JL (1999) The protein kinase Clk/Sty directly modulates SR protein activity: both hyper-and hypophosphorylation inhibit splicing. Mol Cell Biol 19: 6991–7000

    PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Bachellerie JP Visa N and Puvion E (1994) Rearrangements

    Google Scholar 

  • of intranuclear structures involved in RNA processing in response to adenovirus infection. J Cell Sci 107:1457–1468

    Google Scholar 

  • Schmitt P, Gattoni R, Keohavong P and Stévenin J (1987) Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell 50: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Screaton GR, Caceres JF, Mayeda A, Bell MV, Plebanski M, Jackson DG

    Google Scholar 

  • Bell JI and Krainer AR (1995) Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J 14: 43364349

    Google Scholar 

  • Shtrichman R and Kleinberger T (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 72: 2975–2982

    PubMed  CAS  Google Scholar 

  • Singh R, Valcarcel J and Green MR (1995) Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268: 1173–1176

    Article  PubMed  CAS  Google Scholar 

  • Smith CWJ, Patton JG and Nadal-Ginard B (1989) Alternative splicing in the control of gene expression. Ann Rev Genet 23: 527–577

    Article  PubMed  CAS  Google Scholar 

  • Soloway PD and Shenk T (1990) The adenovirus type 5 i-leader open reading frame functions in cis to reduce the half-life of Ll mRNAs. J Virol 64: 551–558

    PubMed  CAS  Google Scholar 

  • Spector DJ, Mcgrogan M and Raskas HJ (1978) Regulation of the appearance of cytoplasmic RNAs from region 1 of the adenovirus 2 genome. J Mol Biol 126: 395–414

    Article  PubMed  CAS  Google Scholar 

  • Stark JM, Bazett-Jones DP, Herfort M and Roth MB (1998) SR proteins are

    Google Scholar 

  • sufficient for exon bridging across an intron. Proc Natl Acad Sci USA 95:2163–2168 Stephens C and Harlow E (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J 6: 2027–2035

    Google Scholar 

  • Stewart PL and Burnett RM (1995) Adenovirus structure by X-ray crystallography and electron microscopy. In: Doerfler W and Böhm P (eds) Current Topics in Microbiology and Immunology. Springer Verlag, Berlin, Vol. 199/I, pp 25–38

    Google Scholar 

  • Svensson C and Akusjärvi G (1986) Defective RNA splicing in the absence of adenovirus-associated RNAI. Proc Natl Acad Sci USA 83: 4690–4694

    Article  PubMed  CAS  Google Scholar 

  • Svensson C, Pettersson U and Akusjärvi G (1983) Splicing of adenovirus 2 early region 1 A mRNAs is non-sequential. J Mol Biol 165: 475–495

    Article  PubMed  CAS  Google Scholar 

  • Symington JS, Lucher LA, Brackmann KH,Virtanen A, Pettersson U and Green

    Google Scholar 

  • M (1986) Biosynthesis of adenovirus type 2 i-leader protein. J Virol 57: 848–856

    Google Scholar 

  • Tacke R and MANLEY JL (1995) The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J 14: 3540–3551

    PubMed  CAS  Google Scholar 

  • Tange TO, Jensen TH and Kjems J (1996) In vitro interaction between human immunodeficiency virus type 1 rev protein and splicing factor ASF/SF2-associated protein, p32.1 Biol Chem 271: 10066–10072

    CAS  Google Scholar 

  • Thomas GP and Mathews MB (1980) DNA replication and the early to late transition in adenovirus infection. Cell 22: 523–532

    Article  PubMed  CAS  Google Scholar 

  • Ulfendahl PJ, Kreivi JP and Akusjärvi G (1989) Role of the branch site/3’-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5’-and 3’-splice site co-operation. Nucleic Acids Res 17: 925–938

    Article  PubMed  CAS  Google Scholar 

  • Ulfendahl PJ, Linder S, Kreivi JP, Nordqvist K, Sevensson C, Hultberg H and

    Google Scholar 

  • Akusjärvi G (1987) A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBO J 6: 2037–2044

    PubMed  Google Scholar 

  • Van Ormondt H,Maat J and Dijkema R (1980) Comparison of nucleotide sequences of the early Ela regions for subgroups A, B and C of human adenoviruses. Gene 12: 63–76

    Google Scholar 

  • Walter G, Ruediger R, Slaughter C and Mumby M (1990) Association of protein phosphatase 2 A with polyoma virus medium tumor antigen. Proc Natl Acad Sci USA 87: 2521–2525

    Article  PubMed  CAS  Google Scholar 

  • Wang J and Manley JL (1995) Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA 1: 335–346

    PubMed  CAS  Google Scholar 

  • Wang YL, Finan JE, Middeldorp JM and Hayward SD (1997) P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology 236: 18–29

    Article  PubMed  CAS  Google Scholar 

  • Wilson MC and Darnell JE, Jr (1981) Control of messenger RNA concentration by differential cytoplasmic half-life. Adenovirus messenger RNAs from transcription units 1 A and 1B. J Mol Biol 148: 231–251

    Article  PubMed  CAS  Google Scholar 

  • Wu JY and Maniatis T (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Bani MR, Lu SJ, Rowan S, Ben-David Y and Chabot B (1994) The Al and

    Google Scholar 

  • AlB proteins of heterogeneous nuclear ribonucleoparticles modulate 5’ splice site selection in vivo. Proc Natl Acad Sci USA 91:6924–6928

    Google Scholar 

  • Yu L, Loewenstein PM, Zhang Z and Green M (1995) In vitro interaction of the human immunodeficiency virus type 1 Tat transactivator and the general transcription factor TFIIB with the cellular protein TAP. J Virol 69: 3017–3023

    PubMed  CAS  Google Scholar 

  • Yue BG and Akusjärvi G (1999) A downstream splicing enhancer is essential for in vitro pre-mRNA splicing. FEBS Lett 451: 10–14

    Article  PubMed  CAS  Google Scholar 

  • Yueh A and Schneider RJ (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 14: 414–421

    PubMed  CAS  Google Scholar 

  • Zahler AM, Neugebauer KM, Lane WS and Roth MB (1993) Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Patton JG and Green MR (1992) Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Zerivitz K, Kreivi J-P and Akusjärvi G (1992) Evidence for a HeLa cell splicing activity that is necessary for activation of a regualted adenovirus 3’ splice site. Nucleic Acids Res 20: 3955–3961

    Article  PubMed  CAS  Google Scholar 

  • Zhang WJ and Wu JY (1996) Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol Cell Biol 16: 5400–5408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akusjärvi, G., Stévenin, J. (2003). Remodelling of the Host Cell RNA Splicing Machinery During an Adenovirus Infection. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics