Nuclear Schrödinger Formulation for Bent Triatomic Systems

  • Debra J. Searles
  • Ellak I. von Nagy-Felsobuki
Part of the Lecture Notes in Chemistry book series (LNC, volume 61)


Development of rovibrational Hamiltonians for even the simple triatomic systems is not routine. As Sutcliffe [1] has pointed out, Eckart’s notion of an embedded equilibrium geometry for a stable triatomic molecule necessarily leads to differing rovibrational Hamiltonians for bent [2] and linear [3] nuclear configurations (as derived by Watson). That is, for a bent triatomic molecule with 3N-6 degrees of freedom, singularities in the mass-dependent potential energy operator (coined the “Watson” operator) necessarily cannot yield a smooth transition to a molecule with only 3N-5 degrees of freedom.


Total Angular Momentum Transformation Coefficient Equilibrium Bond Length Effective Moment Triatomic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter VI

  1. 1.
    Sutcliffe BT (1982) In: Current aspects of quantum chemistry, Carbo R (Ed), Elsevier Scientific Publishing Company, New YorkGoogle Scholar
  2. 2.
    Watson JKG (1968) Mol Phys 15: 479CrossRefGoogle Scholar
  3. 3.
    Watson JKG (1970) Mol Phys 19: 465CrossRefGoogle Scholar
  4. 4.
    Carney GD, Porter RN (1976) J Chem Phys 65: 3547CrossRefGoogle Scholar
  5. 5.
    Carney GD, Porter RN (1980) Phys Rev Letts 45: 537CrossRefGoogle Scholar
  6. 6.
    Carney GD, Langhoff SR, Curtiss LA (1977) J Chem Phys 66: 3724CrossRefGoogle Scholar
  7. 7.
    Bartholomae R, Martin D, Sutcliffe BT (1981) J Mol Spectrosc 87: 367CrossRefGoogle Scholar
  8. 8.
    Reimers JR, Watts RO (1984) Mol Phys 52: 357CrossRefGoogle Scholar
  9. 9.
    Carter S, Handy NC (1982) Mol Phys 47: 1445CrossRefGoogle Scholar
  10. 10.
    Burton PG, von Nagy-Felsobuki EI, Doherty G, Hamilton M (1984) Chem Phys 83: 83CrossRefGoogle Scholar
  11. 11.
    Burton PG, von Nagy-Felsobuki EI, Doherty G Chem Phys Lett 104:323Google Scholar
  12. 12.
    Wang F, Searles DJ, von Nagy-Felsobuki EI (1992) J Phys Chem 96: 6158CrossRefGoogle Scholar
  13. 13.
    Searles DJ, von Nagy-Felsobuki EI (1991) J Chem Phys 95: 1107CrossRefGoogle Scholar
  14. 14.
    Shaffer WH, Schuman RP (1944) J Chem Phys 12: 504CrossRefGoogle Scholar
  15. 15.
    Searles DJ (1990) Potential energy surfaces and vibrational band origins of triatomic alkali metal cations, Ph D Thesis, The University of Newcastle, NewcastleGoogle Scholar
  16. 16.
    Sayvetz A (1939) J Chem Phys 7: 383CrossRefGoogle Scholar
  17. 17.
    Podolsky B (1928) Phys Rev 32:812Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Debra J. Searles
    • 1
  • Ellak I. von Nagy-Felsobuki
    • 2
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Department of ChemistryThe University of NewcastleCallaghanAustralia

Personalised recommendations