Advertisement

Finite-Element Solution of One-Dimensional Schrödinger Equations

  • Debra J. Searles
  • Ellak I. von Nagy-Felsobuki
Part of the Lecture Notes in Chemistry book series (LNC, volume 61)

Abstract

Analytical solutions for the one-dimensional Schrödinger problems can only be obtained for contrived potential energy functions such as the finite-square well, the simple harmonic oscillator and Morse potential problems. As the eigenenergies and eigenfunctions of these systems are known exactly, they serve as useful systems for the assessment of solution algorithms to be applied to more general problems.

Keywords

Basis Function SchrOdinger Equation Rayleigh Quotient Simple Harmonic Oscillator Vibrational Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter V

  1. 1.
    Shore BW (1973) J Chem Phys 58: 3855CrossRefGoogle Scholar
  2. 2.
    Malik DJ, Eccles J, Secrest D (1980) J Comput Phys 38: 157CrossRefGoogle Scholar
  3. 3.
    Duff M, Rabitz H, Askar A, Cakmak A, Ablowitz M (1980) J Chem Phys 72: 1543CrossRefGoogle Scholar
  4. 4.
    Cooley JW (1961) Math Comput 15: 363Google Scholar
  5. 5.
    Numerov B (1933) Publ Obs Cent Astrophys Russ 2: 188Google Scholar
  6. 6.
    Blatt JM (1967) J Comput Phys 1: 382CrossRefGoogle Scholar
  7. 7.
    Wolniewicz L, Orlikowski T (1978) J Comput Phys 27: 169CrossRefGoogle Scholar
  8. 8.
    Johnson BR (1977) J Chem Phys 67: 4086CrossRefGoogle Scholar
  9. 9.
    Johnson BR (1978) J Chem Phys 69: 4678CrossRefGoogle Scholar
  10. 10.
    Oset E, Salcedo LL (1985) J Comput Phys 57: 361CrossRefGoogle Scholar
  11. 11.
    Buedia E, Guardiola R (1985) J Comput Phys 60: 561CrossRefGoogle Scholar
  12. 12.
    Eckert M (1989) J Comput Phys 82: 147CrossRefGoogle Scholar
  13. 13.
    Sloan IH (1968) J Comput Phys 2: 414CrossRefGoogle Scholar
  14. 14.
    Wicke BG, Harris DO (1976) J Chem Phys 64: 5236CrossRefGoogle Scholar
  15. 15.
    Kolos W,Wolniewicz L (1969) J Chem Phys 50: 3228CrossRefGoogle Scholar
  16. 16.
    Doherty G, Hamilton MJ, Burton PG, von Nagy-Felsobuki EI (1986) Aust J Phys 39: 749Google Scholar
  17. 17.
    Searles DJ, von Nagy-Felsobuki EI (1988) Am J Phys 56: 444CrossRefGoogle Scholar
  18. 18.
    Padkjaer SB, Neto JJS, Linderberg J (1992) Chem Phys 161: 419CrossRefGoogle Scholar
  19. 19.
    Alvarez-Collado JR, Buenker RJ (1992) J Comput Chem 13: 135CrossRefGoogle Scholar
  20. 20.
    Keller H (1968) Numerical methods for two point boundary value problems, Blaisdell Waltham, New YorkGoogle Scholar
  21. 21.
    Anderssen RS, de Hoog FR (1983) Math Scientist 8: 115Google Scholar
  22. 22.
    Andrew AL (1989) J Austral Math Soc Ser B 30: 460CrossRefGoogle Scholar
  23. 23.
    Strang G, Fix GJ (1973) An analysis of the finite element method, Prentice-Hall, New JerseyGoogle Scholar
  24. 24.
    Norrie DH, de Vries G (1973) The finite element method, Academic Press, New YorkGoogle Scholar
  25. 25.
    Birkhoff G, de Boor C, Swartz B, Wendroff B (1966) Siam J Numer Anal 3: 188CrossRefGoogle Scholar
  26. 26.
    Jaquet R (1990) Comp Phys Commun 58: 257CrossRefGoogle Scholar
  27. 27.
    Kimura T, Sato N, Suehiro I (1988) J Comput Chem 9: 827CrossRefGoogle Scholar
  28. 28.
    Sato N, Iwata S (1988) J Comput Chem 9: 222CrossRefGoogle Scholar
  29. 29.
    Sato N, Iwata S (1988) J Chem Phys 89: 2932CrossRefGoogle Scholar
  30. 30.
    Eisberg R, Resnick R (1974) Quantum physics of atoms, molecules, solids, nuclei and particles, Wiley, New YorkGoogle Scholar
  31. 31.
    Hamilton IP, Light JC (1986) J Chem Phys 84: 306CrossRefGoogle Scholar
  32. 32.
    Schmidt-Mink I, Müller W, Meyer W (1985) Chem Phys 92: 263CrossRefGoogle Scholar
  33. 33.
    Hessel MM, Vidal CR (1979) J Chem Phys 70: 4439CrossRefGoogle Scholar
  34. 34.
    von Nagy-Felsobuki EI, Searles DJ (1991) Franck-Condon factors for 120 transitions involving the lowest-lying 16 vibrational band systems of 7Li2, Australian Institute of Nuclear Science and Engineering, Technical Report, 90/24:1, SydneyGoogle Scholar
  35. 35.
    Konowalow DD, Olson ML (1979) J Chem Phys 71: 450CrossRefGoogle Scholar
  36. 36.
    Kusch P, Hessel MM (1977) J Chem Phys 67: 586CrossRefGoogle Scholar
  37. 37.
    Bernheim RA, Gold LP, Kelly PB, Tipton T, Veirs DK (1982) J Chem Phys 76: 57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Debra J. Searles
    • 1
  • Ellak I. von Nagy-Felsobuki
    • 2
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Department of ChemistryThe University of NewcastleCallaghanAustralia

Personalised recommendations