Advertisement

Discrete Potential Energy Surfaces

  • Debra J. Searles
  • Ellak I. von Nagy-Felsobuki
Part of the Lecture Notes in Chemistry book series (LNC, volume 61)

Abstract

A number of discrete potential energy surfaces are available in the literature for a variety of triatomic molecules [1–3]. The construction of a discrete potential energy surface is not a trivial exercise, since care must be taken in: the design of the basis set; the configuration interaction (CI) methodology employed; the design of the geometrical grid for the calculations. Of these, the latter is the possibly the least understood, although recently von Nagy-Felsobuki and coworkers [3–4] have generated grid points using an adaptive scheme based on the quadrature algorithm used for the potential energy integrator (see Chapters VI and VII).

Keywords

Potential Energy Surface Configuration Interaction Couple Cluster Full Configuration Interaction Gaussian Type Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter III

  1. 1.
    Dykstra CE (1988) Ab initio calculation of the structures and properties of molecules, Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Tennyson J (1992) J Chem Soc Faraday Trans 2 88: 3271CrossRefGoogle Scholar
  3. 3.
    Searles DJ, von Nagy-Felsobuki, EI (1991) In: Vibrational spectra and structure, Durig JR (Ed), Vol 19, Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Wang F, Searles DJ, von Nagy-Felsobuki EI (1992) J Phys Chem 96: 6158CrossRefGoogle Scholar
  5. 5.
    Dunning TH, Hay PJ (1977) In: Methods of electronic structure theory, Schaefer HF ( Ed) Plenum, New YorkGoogle Scholar
  6. 6.
    Huzinaga S (1985) Comput Phys Rep 2: 279CrossRefGoogle Scholar
  7. 7.
    Poirier R, Kari R and Csizmadia IG (1985) Handbook of gaussian basis sets: a compendium for ab initio molecular orbital calculations, Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Wilson S (1987) Adv Chem Phys 67: 439CrossRefGoogle Scholar
  9. 9.
    Yamaguchi Y, Schaefer HF (1980) J Chem Phys 73: 2310CrossRefGoogle Scholar
  10. 10.
    Bucknell MG, Handy NC (1974) Mol Phys 28: 777CrossRefGoogle Scholar
  11. 11.
    Duncan JL, Mallinson PD (1973) Chem Phys Lett 23: 597CrossRefGoogle Scholar
  12. 12.
    Gray DL, Robiette AG (1979) Mol Phys 37: 1901CrossRefGoogle Scholar
  13. 13.
    Pople JA, Schlegel HB, Krishnan R, DeFrees DJ, Binkley JS, Frisch MJ, Whiteside RA, Hout RF, Hehre WJ (1981) Int J Quant Chem Symp 15: 269Google Scholar
  14. 14.
    Meyer W, Ahlrichs R, Dykstra CE (1984) In: Advanced theories and computational approaches to the electronic structure of molecules, Dykstra CE (Ed), Reidel, New YorkGoogle Scholar
  15. 15.
    Ahlrichs R, Scharf P (1987) Adv Chem Phys 67: 501CrossRefGoogle Scholar
  16. 16.
    Peyerimhoff SD, Buenker RJ (1980) In: Molecular physics and quantum chemistry into the 80s, Burton PG (Ed), University of Wollogong, WollongongGoogle Scholar
  17. 17.
    Bruna PJ, Peyerimhoff SD (1987) Adv Chem Phys 67: 1CrossRefGoogle Scholar
  18. 18.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quant Chem Symp 13: 225Google Scholar
  19. 19.
    Pople JA, Seeger R, Krishnan R (1977) Int J Quantum Chem Symp 11: 149CrossRefGoogle Scholar
  20. 20.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory, Wiley, New YorkGoogle Scholar
  21. 21.
    Werner HJ (1987) Adv Chem Phys 69: 1CrossRefGoogle Scholar
  22. 22.
    Shepard R (1987) Adv Chem Phys 69: 63CrossRefGoogle Scholar
  23. 23.
    Roos BO (1987) Adv Chem Phys 69: 399CrossRefGoogle Scholar
  24. 24.
    Bauschlicher CW, Langhoff SR, Taylor PR (1989) In: Supercomputer alogrithms for reactivity, dynamics and kinetics of small molecules, Lagana A (Ed), Kluwer Academic Publishers, BostonGoogle Scholar
  25. 25.
    Langhoff SR, Davidson ER (1974) Int J Quant Chem 8: 61CrossRefGoogle Scholar
  26. 26.
    Saxe P, Schaefer HF, Handy NC (1981) Chem Phys Lett 79: 202CrossRefGoogle Scholar
  27. 27.
    Harrison RJ, Handy NC (1983) Chem Phys Lett 95: 386CrossRefGoogle Scholar
  28. 28.
    Bartlett RI, Sekino H, Purvis GD (1983) Chem Phys Lett 98: 66CrossRefGoogle Scholar
  29. 29.
    Brown FB, Shavitt I, Shepard R (1984) Chem Phys Lett 105: 363CrossRefGoogle Scholar
  30. 30.
    Hampel C, Peterson KA, Werner H-J (1992) Chem Phys Lett 190: 1CrossRefGoogle Scholar
  31. 31.
    Oka T (1980) Phys Rev Lett 45: 531CrossRefGoogle Scholar
  32. 32.
    Oka T, Geballe TR (1990) Astrophys J 351: L53CrossRefGoogle Scholar
  33. 33.
    Carrington A, McNab IR (1989) Acc Chem Res 22: 218CrossRefGoogle Scholar
  34. 34.
    Carney GD, Porter RN (1974) J Chem Phys 60: 4251CrossRefGoogle Scholar
  35. 35.
    Carney GD, Porter RN (1976) J Chem Phys 65: 3547CrossRefGoogle Scholar
  36. 36.
    Carney GD, Porter RN (1980) Phys Rev Lett 45: 537CrossRefGoogle Scholar
  37. 37.
    Oka T (1983) In: Molecular ions:spectroscopy, structure and chemistry, Miller TA, Bondybey VE (Eds), North-Holland, AmsterdamGoogle Scholar
  38. 38.
    Dykstra CE, Swope WC (1979) J Chem Phys 70: 1CrossRefGoogle Scholar
  39. 39.
    Schinke R, Dupuis M, Lester WA (1980) J Chem Phys 72: 3909CrossRefGoogle Scholar
  40. 40.
    Burton PG, von Nagy-Felsobuki EI, Doherty G, Hamilton M (1985) Mol Phys 55: 527CrossRefGoogle Scholar
  41. 41.
    Meyer W, Botschwina P, Burton PG (1986) J Chem Phys 84: 891CrossRefGoogle Scholar
  42. 42.
    Preiskorn A, Lie GC, Frye D, Clementi E (1990) J Chem Phys 92: 4948CrossRefGoogle Scholar
  43. 43.
    Lie GC, Frye D (1992) J Chem Phys 96: 6784CrossRefGoogle Scholar
  44. 44.
    Carney GD (1980) Mol Phys 39: 923CrossRefGoogle Scholar
  45. 45.
    Tennyson J, Sutcliffe BT (1984) Mol Phys 51: 887CrossRefGoogle Scholar
  46. 46.
    Huzinaga S (1965) J Chem Phys 42: 1293CrossRefGoogle Scholar
  47. 47.
    Carney GD, Adler-Golden SM, Lesseski DC (1986) J Chem Phys 84: 3921CrossRefGoogle Scholar
  48. 48.
    Ahlrichs R, Driessler F, Lischka H, Staemmler V, Kutzelnigg W (1975) J Chem Phys 62: 1235CrossRefGoogle Scholar
  49. 49.
    Burton PG, Senff UE (1982) J Chem Phys 76: 6073CrossRefGoogle Scholar
  50. 50.
    Burton PG, Gray PD, Senff UE (1982) Mol Phys 47: 785CrossRefGoogle Scholar
  51. 51.
    Schaefer J, Meyer W (1979) J Chem Phys 70: 344CrossRefGoogle Scholar
  52. 52.
    Burton PG (1980) In: Molecular physics and quantum chemistry into the 80s, Burton PG (Ed), University of Wollongong, WollongongGoogle Scholar
  53. 53.
    Kolos W, Wolniewicz L (1965) J Chem Phys 43: 2429CrossRefGoogle Scholar
  54. 54.
    Watson, JKG, Foster SC, McKellar ARW, Bernath P, Amano T, Pan SF, Crofton MW, Altman RS, Oka T (1984) Can J Phys 62: 1875CrossRefGoogle Scholar
  55. 55.
    Martire B, Burton PG (1985) Chem Phys Lett 121: 479CrossRefGoogle Scholar
  56. 56.
    Wolniewicz L (1966) J Chem Phys 45: 515CrossRefGoogle Scholar
  57. 57.
    Csizmadia IG, Kari RE, Polanyi JC, Roach AC, Robb MA (1970) J Chem Phys 52: 6205CrossRefGoogle Scholar
  58. 58.
    Hirschfelder JO (1938) J Chem Phys 6: 795CrossRefGoogle Scholar
  59. 59.
    Pearson AG, Poshusta RD, Browne JC (1966) J Chem Phys 44: 1815CrossRefGoogle Scholar
  60. 60.
    Christoffersen RE (1964) J Chem Phys 41: 960CrossRefGoogle Scholar
  61. 61.
    Kutzelnigg W, Ahlrichs R, Labib-Iskander I, Bingel WA (1967) Chem Phys Lett 1: 447CrossRefGoogle Scholar
  62. 62.
    Schwartz ME, Schaad LJ (1967) J Chem Phys 47: 5325CrossRefGoogle Scholar
  63. 63.
    Ahlrichs R (1975) Theor Chim Acta 39: 149CrossRefGoogle Scholar
  64. 64.
    Borkman RF (1970) J Chem Phys 53: 3153CrossRefGoogle Scholar
  65. 65.
    Wright LR, Borkman RF (1982) J Chem Phys 77: 1938CrossRefGoogle Scholar
  66. 66.
    Duben M, Lowe JP (1971) J Chem Phys 55: 4270CrossRefGoogle Scholar
  67. 67.
    Duben AJ, Lowe JP (1971) J Chem Phys 55: 4276CrossRefGoogle Scholar
  68. 68.
    Kawaoka K, Borkman RF (1971) J Chem Phys 55: 4637CrossRefGoogle Scholar
  69. 69.
    Preiskom A, Woinicki W (1982) Chem Phys Lett 86: 369CrossRefGoogle Scholar
  70. 70.
    Salmon L, Poshusta RD (1973) J Chem Phys 59: 3497CrossRefGoogle Scholar
  71. 71.
    Preiskom A, Woinicki W (1984) Mol Phys 52: 1291CrossRefGoogle Scholar
  72. 72.
    Urdaneta C, Largo-Cabrerizo A, Lievin J, Lie GC, Clementi E (1988) J Chem Phys 88: 2091CrossRefGoogle Scholar
  73. 73.
    Mentch F, Anderson JB (1981) J Chem Phys 74: 6307CrossRefGoogle Scholar
  74. 74.
    Anderson JB (1987) J Chem Phys 86: 2839CrossRefGoogle Scholar
  75. 75.
    Lubic KG, Amano T (1984) Can J Phys 62: 1886CrossRefGoogle Scholar
  76. 76.
    Aliev M, Watson JKG (1985) In: Molecular spectroscopy, modern research I II, Rao K (Ed) Academic Press, LondonGoogle Scholar
  77. 77.
    Sutcliffe BT, Tennyson J (1988) In: Maruani J (ed) Molecules in physics, chemistry and biology, Vol 2, Kluwer Academic Publishers, BostonGoogle Scholar
  78. 78.
    Miller S, Tennyson J (1987) J Mol Spectrosc 126: 183CrossRefGoogle Scholar
  79. 79.
    Majewski WA, Marshall MD, McKellar ARW, Johns JWC, Watson JKG (1987) J Mol Spectrosc 122: 341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Debra J. Searles
    • 1
  • Ellak I. von Nagy-Felsobuki
    • 2
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Department of ChemistryThe University of NewcastleCallaghanAustralia

Personalised recommendations