Advertisement

Nuclear Motion

  • Debra J. Searles
  • Ellak I. von Nagy-Felsobuki
Part of the Lecture Notes in Chemistry book series (LNC, volume 61)

Abstract

The motion of a molecule may be thought of as collective motion due to its constituent particles. Often observables are explained based on the assumption that the motion of the electrons depends only parametrically on the nuclear positions.

Keywords

Potential Energy Surface Equilibrium Geometry Nuclear Motion Move Coordinate System Triatomic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter II

  1. 1.
    Born M, Oppenheimer R (1927) Ann Physik 84: 457CrossRefGoogle Scholar
  2. 2.
    Born M, Huang K (1954) Dynamical theory of crystal lattices, Oxford University Press, LondonGoogle Scholar
  3. 3.
    Born M (1951) Gött Nachr Math Phys K1 1Google Scholar
  4. 4.
    Sutcliffe BT, Tennyson J (1987) J Chem Soc Faraday Trans 2 83: 1663Google Scholar
  5. 5.
    Fernandez FM, Ogilvie JF (1992) Chin J Phys 30: 177Google Scholar
  6. 6.
    Epstein ST (1966) J Chem Phys 44: 4062CrossRefGoogle Scholar
  7. 7.
    Rosenfield J, Voigt B, Mead CA (1970) J Chem Phys 53: 1960CrossRefGoogle Scholar
  8. 8.
    Bunker PR, Moss RE (1980) J Mol Spectrosc 80: 217CrossRefGoogle Scholar
  9. 9.
    Makushkin YS, Terent’ev AV, Ulenikov ON (1976) Nauka NovosibirskGoogle Scholar
  10. 10.
    Dinelli BM, Crofton MW, Oka T (1988) J Mol Spectrosc 127: 1CrossRefGoogle Scholar
  11. 11.
    Teffo JL (1993) Mol Phys 78: 1493CrossRefGoogle Scholar
  12. 12.
    Eckart C (1935) Phys Rev 47: 552CrossRefGoogle Scholar
  13. 13.
    Wilson EB, Howard JB (1936) J Chem Phys 4: 260CrossRefGoogle Scholar
  14. 14.
    Darling BT, Dennison DM (1940) Phys Rev 57: 128CrossRefGoogle Scholar
  15. 15.
    Watson JKG (1968) Mol Phys 15: 479CrossRefGoogle Scholar
  16. 16.
    Watson JKG (1970) Mol Phys 19: 465CrossRefGoogle Scholar
  17. 17.
    Podolsky B (1928) Phys Rev 32: 812CrossRefGoogle Scholar
  18. 18.
    Epstein PS (1926) Proc Nat Acad Sci 12: 634CrossRefGoogle Scholar
  19. 19.
    Dirac PAM (1927) Proc Royal Soc A 113: 621CrossRefGoogle Scholar
  20. 20.
    Schaad LG, Hu J (1989) J Mol Struct (Theochem) 185: 203CrossRefGoogle Scholar
  21. 21.
    Sayvetz A (1939) J Chem Phys 7: 383CrossRefGoogle Scholar
  22. 22.
    Nielsen HH (1951) Rev Mod Phys 23: 90CrossRefGoogle Scholar
  23. 23.
    Watson JKG (1977) In: Vibrational spectra and structure, Dung JR (Ed) Vol 6, Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Papousek D, Aliev MR (1982) Molecular vibrational-rotational spectra, Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Kivelson D, Wilson EB (1952) J Chem Phys 20: 1575CrossRefGoogle Scholar
  26. 26.
    Watson JKG (1967) J Chem Phys 46: 1935CrossRefGoogle Scholar
  27. 27.
    Watson JKG (1968) J Chem Phys 48: 181CrossRefGoogle Scholar
  28. 28.
    Watson JKG (1968) J Chem Phys 48: 4517CrossRefGoogle Scholar
  29. 29.
    Ray BS (1932) Z Physik 78: 74CrossRefGoogle Scholar
  30. 30.
    Wang F, Searles DJ, von Nagy-Felsobuki EI (1992) J Phys Chem 96: 6158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Debra J. Searles
    • 1
  • Ellak I. von Nagy-Felsobuki
    • 2
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Department of ChemistryThe University of NewcastleCallaghanAustralia

Personalised recommendations