Skip to main content

Selectin Avidity Modulation by Chemokines at Subsecond Endothelial Contacts: A Novel Regulatory Level of Leukocyte Trafficking

  • Conference paper
Leucocyte Trafficking

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 44))

Abstract

Immune cells (leukocytes) and hematopoietic progenitor cells circulating the body must exit blood vessels near specific target sites of injury, infection, inflammation, or proliferation (Springer 1994; Butcher and Picker 1996; Mazo and von Andrian 1999). Recruitment of different subsets of leukocytes and circulating malignant cells to these sites is tightly regulated by sequential adhesive interactions between specific protein receptors on their surface and respective ligands on the blood vessel endothelial wall (Muller et al. 2001). Accumulated data from in vivo and in vitro studies suggest that the major players in this multistep process are members of two adhesive families, selectins and integrins, which are structurally and functionally adapted to operate under disruptive shear forces exerted on leukocytes at the vessel wall by the blood flow. The primary attachment or tethering of circulating leukocytes to the vessel wall is labile, mediated by specialized adhesive lectins, selectins, permitting leukocytes to roll in the direction of flow and bringing them into proximity with activating chemoattractants or chemokines on the endothelial surface (Mackay 2001). These vessel wall-displayed cytokines bind specific G-protein coupled receptors (GPCRs) on recruited leukocytes and trigger, within subseconds, the activation on the leukocyte surface of a second class of adhesion receptors, integrins, which can then firmly bind to their endothelial ligands causing the immune cell to temporarily arrest on the blood vessel (Campbell and Butcher 2000). A remarkable feature of these receptors is that their activity is dynamically regulated independent of their level of surface expression (Shimizu et al. 1999). This allows immune cells to rapidly adapt their adhesive behavior towards specific endothelial sites within target tissues accordingly to tissue-and context-restricted patterns of chemokine or chemoattractant expression at these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alon R, Feizi T, Yuen CT, Fuhlbrigge RC, Springer TA (1995a) Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J Immunol 154: 5356–5366

    PubMed  CAS  Google Scholar 

  • Alon R, Hammer DA, Springer TA (1995 b) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374: 539–542

    Google Scholar 

  • Alon R, Chen S, Puri KD, Finger EB, Springer TA (1997) The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 138: 1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Alon R, Chen S, Fuhlbrigge R, Puri KD, Springer TA (1998) The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes. Proc Natl Acad Sci USA 95: 11631–11636

    Article  PubMed  CAS  Google Scholar 

  • Bell G (1978) Models for the specific adhesion of cells to cells. Science 200: 618–627

    Article  PubMed  CAS  Google Scholar 

  • Bruehl RE, Moore KL, Lorant DE, Borregaard N, Zimmerman GA, McEver RP, Bainton DF (1997) Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol 61: 489–499

    PubMed  CAS  Google Scholar 

  • Brzostowski JA, Kimmel AR (2001) Signaling at zero G: G-protein-indepen- dent functions for 7-TM receptors. Trends Biochem Sci 26: 291–297

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272: 60–66

    Article  PubMed  CAS  Google Scholar 

  • Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA (1998) Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279: 381–384

    Article  PubMed  CAS  Google Scholar 

  • Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12: 336–341

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Mobley JL, Dwir O, Shimron F, Grabovsky V, Lobb RL, Shimizu Y, Alon R (1999) High affinity VLA-4 subsets expressed on T cells are mandatory for spontaneous adhesion strengthening but not for rolling on VCAM-1 in shear flow. J Immunol 162: 1084–1095

    PubMed  CAS  Google Scholar 

  • Chen S, Springer TA (1999) An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J Cell Biol 144: 185–200

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Springer TA (2001) Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc Natl Acad Sci USA 98: 950–955

    Google Scholar 

  • Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, ArenzanaSeisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I (1997) Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16: 6996–7007

    Article  PubMed  CAS  Google Scholar 

  • D’Amico G, Frascaroli G, Bianchi G, Transidico P, Doni A, Vecchi A, Sozzani S, Allavena P, Mantovani A (2000) Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat Immunol 1: 387–391

    Article  PubMed  Google Scholar 

  • Dwir O, Kansas GS, Alon R (2000) An activated L-selectin mutant with conserved equilibrium binding properties but enhanced ligand recognition under shear flow. J Biol Chem 275: 18682–18691

    Article  PubMed  CAS  Google Scholar 

  • Dwir O, Kansas GS, Alon R (2001) The cytoplasmic tail of L-selectin regulates leukocyte capture and rolling by controlling the mechanical stability of selectin:ligand tethers. J Cell Biol 155: 145–156

    Article  PubMed  CAS  Google Scholar 

  • Dwir O, Steeber DA, Schwarz US, Camphausen RT, Kansas GS, Tedder TF, Alon R (2002) L-selectin dimerization enhances tether formation to properly spaced ligand. J Biol Chem 277: 21130–21139

    Article  PubMed  CAS  Google Scholar 

  • Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD (1999) Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix. J Immunol 162: 3615–3624

    PubMed  CAS  Google Scholar 

  • Finger EB, Bruehl RE, Bainton DF, Springer TA (1996a) A differential role for cell shape in neutrophil tethering and rolling on endothelial selectins under flow. J Immunol 157: 5085–5096

    PubMed  CAS  Google Scholar 

  • Finger EB, Puri KD, Alon R, Lawrence MB, von Andrian UH, Springer TA (1996b) Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379: 266–269

    Article  PubMed  CAS  Google Scholar 

  • Grabovsky V, Feigelson S, Chen C, Bleijs R, Peled A, Cinamon G, Baleux F, Arenzana-Seisdedos F, Lapidot T, van Kooyk Y, Lobb R, Alon R (2000) Subsecond induction of a4 integrin clustering by immobilized chemokines enhances leukocyte capture and rolling under flow prior to firm adhesion to endothelium. J Exp Med 192: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Grabovsky V, Dwir O, Alon R (2002) Endothelial chemokines destabilize Lselectin-mediated lymphocyte rolling without inducing selectin shedding. J. Biol. Chem. 277: 20640–20650

    Google Scholar 

  • Greenberg AW, Brunk DK, Hammer DA (2000) Cell-free rolling mediated by L-selectin and sialyl lewis(x) reveals the shear threshold effect. Biophys J 79: 2391–2402

    Article  PubMed  CAS  Google Scholar 

  • Hafezi-Moghadam A, Ley K (1999) Relevance of L-selectin shedding for leukocyte rolling in vivo. J Exp Med 189: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K (2001) L-selectin shedding regulates leukocyte recruitment. J Exp Med 193: 863–872

    Article  PubMed  CAS  Google Scholar 

  • Hammer DA, Lauffenburger DA (1989) A dynamical model for receptor-mediated cell adhesion to surfaces in viscous shear flow. Cell Biophys 14: 139–173

    PubMed  CAS  Google Scholar 

  • Hwang ST, Singer MS, Giblin PA, Yednock TA, Bacon KB, Simon SI, Rosen SD (1996) GIyCAM-1, a physiologic ligand for L-selectin, activates ß2 integrins on naive peripheral lymphocytes. J Exp Med 184: 1343–1348

    Article  PubMed  CAS  Google Scholar 

  • Ivetic A, Deka J, Ridley A, Ager A (2002) The cytoplasmic tail of L-selectin interacts with members of the Ezrin-Radixin-Moesin (ERM) family of proteins: cell activation-dependent binding of Moesin but not Ezrin. J Biol Chem 277: 2321–2329

    Article  PubMed  CAS  Google Scholar 

  • Kansas GS, Ley K, Munro JM, Tedder TF (1993) Regulation of leukocyte rolling and adhesion to high endothelial venules through the cytoplasmic domain of L-selectin. J Exp Med 177: 833–838

    Article  PubMed  CAS  Google Scholar 

  • Kansas GS, Saunders KB, Ley K, Zakrzewicz A, Gibson RM, Furie BC, Furie B, Tedder TF (1994) A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion. J Cell Biol 124: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood. 88: 3259–3287

    PubMed  CAS  Google Scholar 

  • Kaplanski G, Farnarier C, Tissot O, Pierres A, Benoliel AM, Alessi MC, Kaplanski S, Bongrand P (1993) Granulocyte-endothelium initial adhe-sion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J 64: 1922–1933

    Google Scholar 

  • Lasky LA (1991) Lectin cell adhesion molecules (LEC-CAMs): anew family of cell adhesion proteins involved with inflammation. J Cell Biochem 45: 139–146

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65: 859–873

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1993) Neutrophils roll on E-selectin. J Immunol 151: 6338–6346

    PubMed  CAS  Google Scholar 

  • Lawrence MB, Kansas GS, Kunkel EJ, Ley K (1997) Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E). J Cell Biol 136: 717–727

    Article  PubMed  CAS  Google Scholar 

  • Li X, Steeber DA, Tang MLK, Farrar MA, Perlmutter RM, ` Tedder TF (1998) Regulation of L-selectin-mediated rolling through receptor dimerization. J Exp Med 188: 1385–1390

    Google Scholar 

  • Loetscher P, Pellegrino A, Gong HI, Mattioli I, Loetscher M, Bardi G, Baggiolini M, Clark-Lewis I (2001) The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 276: 2986–2991

    Article  PubMed  CAS  Google Scholar 

  • Mackay CR (2001) Chemokines: immunology’s high impact factors. Nat Immunol 2: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Maly P, Thall A, Petryniak B, Rogers CE, Smith PL, Marks RM, Kelly RJ, Gersten KM, Cheng G, Saunders TL, Camper SA, Camphausen RT, Sullivan FX, Isogai Y, Hindsgaul 0, von Andrian UH, Lowe JB (1996) The Fuc-TVII a1,3 fucosyltransferase controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86: 643–653

    Google Scholar 

  • Mazo 1B, von Andrian UH (1999) Adhesion and homing of blood-borne cells in bone marrow microvessels. J Leuko Biol 66: 25–32

    PubMed  CAS  Google Scholar 

  • Mehta P, Cummings RD, McEver RP (1998) Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem 273: 32506–32513

    Article  PubMed  CAS  Google Scholar 

  • Moore KL, Eaton SF, Lyons DE, Lichenstein HS, Cummings RD, McEver RP (1994) The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, 0-linked poly-N-acetyllactosamine. J Biol Chem 269: 23318–23327

    PubMed  CAS  Google Scholar 

  • Moore KL, Patel KD, Bruehl RE, Fungang L, Johnson DL, Lichenstein HS, Cummings RD, Bainton DF, McEver RP (1995) P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P- selectin. J Cell Biol 128: 661–671

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56

    Article  PubMed  CAS  Google Scholar 

  • Nicholson MW, Barclay AN, Singer MS, Rosen SD, van der Merwe PA (1998) Affinity and kinetic analysis of L-selectin binding to GIyCAM-1. J Biol Chem 273: 763–770

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ngo VN, Ekland EH, Forster R, Lipp M, Littman DR, Cyster JG (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med 196: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Park EY, Smith MJ, Stropp ES, Snapp KR, DiVietro JA, Walker WF, Schmidtke DW, Diamond SL, Lawrence MB (2002) Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes p-selectin bond clusters. Biophys J 82: 1835–1847

    Article  PubMed  CAS  Google Scholar 

  • Patel KD, Nollert MU, McEver RP (1995) P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J Cell Biol 131: 1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Pavalko FM, Walker DM, Graham L, Goheen M, Doerschuk CM, Kansas GS (1995) The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via a-actinin:receptor positioning in microvilli does not require interaction with a-actinin. J Cell Biol 129: 1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/ SCID mice on CXCR4. Science 283: 845–848

    Article  PubMed  CAS  Google Scholar 

  • Picker LJ, Warnock RA, Burns AR, Doerschuk CM, Berg EL, Butcher EC (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66: 921–933

    Article  PubMed  CAS  Google Scholar 

  • Puri KD, Springer TA (1996) A schiff base with mildly oxidized carbohydrate ligands stabilizes L-selectin and not P-selectin or E-selectin rolling adhesions in shear flow. J Biol Chem 271: 5404–5413

    Article  PubMed  CAS  Google Scholar 

  • Puri KD, Finger EB, Springer TA (1997) The faster kinetics of L-selectin than of E-selectin and P-selectin rolling at comparable binding strength. J Immunol 158: 405–413

    PubMed  CAS  Google Scholar 

  • Puri KD, Chen S, Springer TA (1998) Modifying the mechanical property and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature. 392: 930–933

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran V, Nollert MU, Qiu H, Liu WJ, Cummings RD, Zhu C, McEver RP (1999) Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc Natl Acad Sci USA 96: 13771–13776

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran V, Yago T, Epperson TK, Kobzdej MM, Nollert MU, Cummings RD, Zhu C, McEver RP (2001) Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc Natl Acad Sci USA 98: 10166–10171

    Article  PubMed  CAS  Google Scholar 

  • Rosen SD, Bertozzi CR (1994) The selectins and their ligands. Curr Opin Cell Biol 6: 663–673

    Article  PubMed  CAS  Google Scholar 

  • Schmidtke DW, Diamond SL (2000) Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J Cell Biol 149: 719–729

    Article  PubMed  CAS  Google Scholar 

  • Setiadi H, Sedgewick G, Erlandsen SL, McEver RP (1998) Interactions of the cytoplasmic domain of P-selectin with clathrin-coated pits enhance leukocyte adhesion under flow. J Cell Biol 142: 859–871

    Article  PubMed  CAS  Google Scholar 

  • Shamri R, Grabovsky V, Feigelson S, Dwir O, Van Kooyk Y, Alon R (2002) Chemokine-stimulation of lymphocyte a4 integrin avidity but not of LFA-1 avidity to endothelial ligands under shear flow requires cholesterol membrane rafts. J Biol Chem (in press)

    Google Scholar 

  • Shao JY, Ting-Beall HP, Hochmuth RM (1998) Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci USA 95: 6797–6802

    Article  PubMed  CAS  Google Scholar 

  • Shao JY, Hochmuth RM (1999) Mechanical anchoring strength of L-selectin, ß2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys J 77: 587–596

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Rose DM, Ginsberg MH (1999) Integrins in the immune system. Adv Immunol 72: 325–380

    Article  PubMed  CAS  Google Scholar 

  • Simon SI, Cherapanov V, Nadra I, Waddell TK, Seo SM, Wang Q, Doerschuk CM, Downey GP (1999) Signaling functions of L-selectin in neutrophils: alterations in the cytoskeleton and colocalization with CD18. J Immunol 163: 2891–2901

    PubMed  CAS  Google Scholar 

  • Singer II, Scott S, Kawka DW, Chin J, Daugherty BL, DeMartino JA, DiSalvo J, Gould SL, Lineberger JE, Malkowitz L, Miller MD, Mitnaul L, Siciliano SJ, Staruch MJ, Williams HR, Zweerink HJ, Springer MS (2001) CCR5, CXCR4, and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells. J Virol 75: 3779–3790

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Berg EL, Lawrence MB (1999) A direct comparison of selectinmediated transient, adhesive events using high temporal resolution. Biophys J 77: 3371–3383

    Article  PubMed  CAS  Google Scholar 

  • Snapp KR, Craig R, Herron M, Nelson RD, Stoolman LM, Kansas GS (1998) Dimerization of P-selectin glycoprotein ligand-1 (PSGL-1) required for optimal recognition of P-selectin. J Cell Biol 142: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Snapp KR, Heitzig CE, Kansas GS (2002) Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood 99: 4494–4502

    Article  PubMed  CAS  Google Scholar 

  • Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to sLe(x) and PSGL-1. Cell 103: 467–479

    Article  PubMed  CAS  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76: 301–314

    Article  PubMed  CAS  Google Scholar 

  • Steeber DA, Engel P, Miller AS, Sheetz MP, Tedder TF (1997) Ligation of L-selectin through conserved regions within the lectin domain activates signal transduction pathways and integrin function in human, mouse, and rat leukocytes. J Immunol 159: 952–963

    PubMed  CAS  Google Scholar 

  • Stein W, Rot A, Luo Y, Narasimhaswamy M, Nakano H, Gunn MD, Matsuzawa A, Quackenbush EJ, Dorf ME, von Andrian UH (2000) The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, Exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med 191: 61–76

    Article  PubMed  CAS  Google Scholar 

  • Stockton BM, Cheng G, Manjunath N, Ardman B, von Andrian UH (1998) Negative regulation of T cell homing by CD43. Immunity 8: 373–381

    Article  PubMed  CAS  Google Scholar 

  • Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2: 129134

    Google Scholar 

  • Valenzuela-Fernandez A, Palanche T, Amara A, Magerus A, Altmeyer R, Delaunay T, Virelizier JL, Baleux F, Galzi JL, Arenzana-Seisdedos FF (2001) Optimal inhibition of X4 HIV isolates by the CXC chemokine stromal cell-derived factor 1 alpha requires interaction with cell surface heparan sulfate proteoglycans. J Biol Chem 276: 26550–26558

    Article  PubMed  CAS  Google Scholar 

  • van der Merwe PA (1999) Leukocyte adhesion: High-speed cells with ABS. Curr Biol 9: R419 - R422

    Article  PubMed  Google Scholar 

  • Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez AC, Mellado M (1999) The chemokine SDF-la triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13: 1699–1710

    PubMed  CAS  Google Scholar 

  • von Andrian UH, Hasslen SR, Nelson RD, Erlandsen SL, Butcher EC (1995) A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82: 989–999

    Article  Google Scholar 

  • Walcheck B, Kahn J, Fisher JM, Wang BB, Fisk RS, Payan DG, Feehan C, Betageri R, Darlak K, Spatola AF, Kishimoto TK (1996) Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380: 720723

    Google Scholar 

  • Warnock RA, Askari S, Butcher EC, von Andrian UH (1998) Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med 187: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Weber KS, Klier C, Gu S, Wank R, Horuk R, Nelson PJ (2001) Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and Thl-like/CD45RO+ T cells. Blood 97: 11441146

    Google Scholar 

  • Wild MK, Huang MC, Schulze-Horsel U, van der Merwe PA, Vestweber D (2001) Affinity, kinetics, and thermodynamics of E-selectin binding to Eselectin ligand-1. J Biol Chem 276: 31602–31612

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Sperandio M, Yago T, McDaniel JM, Cummings RD, Pearson-White S, Ley K, McEver RP (2002) P-selectin glycoprotein ligand-l-deficient mice have impaired leukocyte tethering to E-selectin under flow. J Clin Invest 109: 939–950

    PubMed  CAS  Google Scholar 

  • Yago T, Leppanen A, Qiu H, Marcus WD, Nollert MU, Zhu C, Cummings RD, McEver RP (2002) Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. J Cell Biol 158: 787–799

    Article  PubMed  CAS  Google Scholar 

  • Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a Corel extension beta 1,3-Nacetylglucosaminyltransferase. Cell 105: 957–969

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dwir, O., Grabovsky, V., Alon, R. (2004). Selectin Avidity Modulation by Chemokines at Subsecond Endothelial Contacts: A Novel Regulatory Level of Leukocyte Trafficking. In: Hamann, A., Asadullah, K., Schottelius, A. (eds) Leucocyte Trafficking. Ernst Schering Research Foundation Workshop, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05397-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05397-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05399-7

  • Online ISBN: 978-3-662-05397-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics