Advertisement

Complex Systems and the Evolution of Computability

  • Klaus Mainzer

Abstract

The evolution of complexity in nature and society can be understood as the evolution of computational systems. In the beginning of modern times, Leibniz already had the idea that the hierarchy of natural systems from stones and plants up to animals and humans corresponded to natural automata with increasing degrees of complexity (Sect. 5.1). The present theory of computability enables us to distinguish complexity classes of problems, meaning the order of corresponding functions describing the computational time of their algorithms or computational programs. But we can also consider the size of a computer program when defining the algorithmic complexity of symbolic patterns (Sect. 5.2).

Keywords

Expert System Cellular Automaton Turing Machine Knowledge Processing Certainty Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    For this chapter compare Mainzer, K.: Computer — Neue Flügel des Geistes? De Gruyter: Berlin/New York (1993);Google Scholar
  2. Mainzer, K.: Die Evolution intelligenter Systeme. Zeitschrift für Semiotik 12 (1990) 81–104Google Scholar
  3. 5.2
    Feigenbaum, E.A./McCorduck, P.: The Fifth Generation. Artificial Intelligence and Japan’s Computer Challenge to the World. Michael Joseph: London (1984)Google Scholar
  4. 5.3
    Cf. Williams, M.R.: A History of Computing Technology. Prentice-Hall: Englewood Cliffs (1985)Google Scholar
  5. 5.4
    Cohors-Fresenborg, E.: Mathematik mit Kalkülen und Maschinen. Vieweg: Braunschweig (1977) 7zbMATHCrossRefGoogle Scholar
  6. 5.5
    Herrn von Leibniz’ Rechnung mit Null und Eins. Siemens AG: Berlin (1966);Google Scholar
  7. Mackensen, L. von: Leibniz als Ahnherr der Kybernetik — ein bisher unbekannter Leibnizscher Vorschlag einer “Machina arithmetica dyadicae”. In: Akten des II. Internationalen Leibniz-Kongresses 1972 Bd. 2. Steiner: Wiesbaden (1974) 255–268Google Scholar
  8. 5.6
    Scholz, H.: Mathesis Universalis. Schwabe: Basel (1961)zbMATHGoogle Scholar
  9. 5.7
    Babbage, C.: Passages from the Life of a Philosopher. Longman and Co.: London (1864)Google Scholar
  10. Bromley, A.G.: Charles Babbage’s Analytical Engine 1838. Annals of the History of Computing 4 (1982) 196–219MathSciNetzbMATHCrossRefGoogle Scholar
  11. 5.8
    Cf. Minsky, M.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Math. 74 437–454;Google Scholar
  12. Sheperdson, J.C./Sturgis, H.E.: Computability of recursive functions. J. Assoc. Comp. Mach. 10 (1963) 217–255.CrossRefGoogle Scholar
  13. Sheperdson, J.C./Sturgis, H.E.: For the following description of register machines compare Rödding, D.: Klassen rekursiver Funktionen. In: Löb, M.H. (ed.): Proceedings of the Summer School in Logic. Springer: Berlin (1968) 159–222;Google Scholar
  14. CohorsFresenborg, E.: Mathematik mit Kalkülen und Maschinen (see Note 4)Google Scholar
  15. 5.9
    Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. London Math. Soc., Ser. 242 (1936) 230–265;Google Scholar
  16. Post, E.L.: Finite combinatory processes — Formulation I. Symbolic Logic I (1936) 103–105;Google Scholar
  17. Davis, M.: Computability & Unsolvability. McGraw-Hill: New York (1958) 3zbMATHGoogle Scholar
  18. 5.10
    Arbib, M.A.: Brains, Machines, and Mathematics. Springer: New York (1987) 131zbMATHCrossRefGoogle Scholar
  19. 5.11
    Mainzer, K.: Der Konstruktionsbegriff in der Mathematik. Philosophia Naturalis 12 (1970) 367–412MathSciNetGoogle Scholar
  20. 5.12
    Cf. Knuth, D.M.: The Art of Computer Programming. Vol. 2. Addison-Wesley: Reading, MA (1981);zbMATHGoogle Scholar
  21. Börger, E.: Berechenbarkeit, Komplexität, Logik. Vieweg: Braunschweig (1985)zbMATHGoogle Scholar
  22. 5.13
    Grötschel, M./Lovâsc, L./Schryver, A.: Geometric Algorithms and Combinatorial Optimization. Springer: Berlin (1988)zbMATHCrossRefGoogle Scholar
  23. 5.14
    Gardner, A.: Penrose Tiles to Trapdoor Ciphers. W.H. Freeman: New York (1989)Google Scholar
  24. 5.15
    Cf. Arbib, M.A.: Speed-up theorems and incompleteness theorem. In: Caianiello, E.R. (ed.): Automata Theory. Academic Press (1966) 6–24;Google Scholar
  25. Mostowski, A.: Sentences Undecidable in Formalized Arithmetic. North-Holland: Amsterdam (1957);Google Scholar
  26. Beth, E.W.: The Foundations of Mathematics, North-Holland: Amsterdam (1959);zbMATHGoogle Scholar
  27. Kleene, S.C.: Introduction to Metamathematics. North-Holland: Amsterdam (1967)Google Scholar
  28. 5.16
    Gödel, K.: On formally undecidable propositions of Principia Mathematica and related systems I. Monatshefte für Mathematik und Physik 38 (1931) 173–198CrossRefGoogle Scholar
  29. 5.17
    Turing, A.: On computable numbers, with an application to the entscheidungsproblem. London Mathematical Society Series 2 42 (1936–1937) 230–265;Google Scholar
  30. Turing, A.: A correction. Ibid. 43 (1937) 544–546;Google Scholar
  31. cf. Chaitin, G.J.: The Limits of Mathematics: A Course on Information Theory and the Limits of Formal Reasoning. Springer: New York (1998)zbMATHGoogle Scholar
  32. 5.18
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13 (1966) 547–569;MathSciNetzbMATHCrossRefGoogle Scholar
  33. Chaitin, G.J.: On the length of programs for computing finite binary sequences: statistical considerations. Journal of the ACM 16 (1969) 145–159MathSciNetzbMATHCrossRefGoogle Scholar
  34. 5.19
    Chaitin, G.J.: The Limits of Mathematics: A Course on Information Theory and the Limits of Formal Reasoning (see Note 17) 60Google Scholar
  35. 5.20
    Shannon, C.E./Weaver, W: The Mathematical Theory of Communication. University of Illinois Press: Chicago (1949);zbMATHGoogle Scholar
  36. cf. also Cover, T./Thomas, J.: Elements of Information Theory. John Wiley & Sons: New York (1991)Google Scholar
  37. 5.21
    Bennett, C.H.: Quantum Information and Computation. Physics Today 10 (1995)Google Scholar
  38. 5.22
    Deco, G./Schlittenkopf, C./Schürmann, B.: Determining the information flow of dynamical systems from continuous probability distributions. Physical Review Letters 78 (1997) 2345Google Scholar
  39. 5.23
    Deco, G./Schürmann, B.: Information Dynamics: Foundations and Applications. (see Note 2.71) 111 (Fig. 5. 2 )Google Scholar
  40. 5.24
    Mainzer, K.: Rationale Heuristik und Problem Solving. In: Burrichter, C./Inhetveen, R./Kötter, R. (eds.): Technische Rationalität und rationale Heuristik. Schöningh: Paderborn (1986) 83–97Google Scholar
  41. 5.25
    Mainzer, K.: Knowledge-based systems. Remarks on the philosophy of technology and Artificial Intelligence. Journal for General Philosophy of Science 21 (1990) 47–74Google Scholar
  42. 5.26
    Bibel, W./Siekmann, J.: Künstliche Intelligenz. Springer: Berlin (1982);CrossRefGoogle Scholar
  43. Nilson, N.J.: Principles of Artificial Intelligence. Springer: Berlin (1982);Google Scholar
  44. Kredel, L.: Künstliche Intelligenz and Expertensysteme. Droemer Knaur: München (1988)Google Scholar
  45. 5.27
    Puppe, F.: Expertensysteme. Informatik-Spektrum 9 (1986) 1–13MathSciNetGoogle Scholar
  46. 5.28
    For instance, one of the constructors of DENDRAL and MYCIN received a Ph.D. in philosophy for his dissertation “Scientific Discoveries”, supervised by Gerald Massey (today Center for Philosophy of Science, Pittsburgh). Also refer to Glymour, C.: AI is philosophy. In: Fetzer, J.H. (ed.): Aspects in Artificial Intelligence. Kluwer Academic Publisher: Boston (1988) 195–207Google Scholar
  47. 5.29
    Buchanan, B.G./Sutherland, G.L./Feigenbaum, E.A.: Heuristic DENDRAL: A program for generating processes in organic chemistry. In: Meltzer, B./Michie, D. (eds.): Machine Intelligence 4. Edinburgh (1969);Google Scholar
  48. Buchanan, B.G./Feigenbaum, E.A.: DENDRAL and META-DENDRAL: Their applications dimension. In: Artificial Intelligence 11 (1978) 5–24Google Scholar
  49. 5.30
    McCarthy, J.: LISP Programmer’s Manual (Rep. MIT Press ). Cambridge, MA (1962);Google Scholar
  50. Stoyan, H./Goerz, G.: LISP — Eine Einführung in die Programmierung. Springer: Berlin (1984)zbMATHGoogle Scholar
  51. 5.31
    Randall, D./Buchanan, B.G./Shortliffe, E.H.: Production rules as a representation for a knowledge-based consultation program. Artificial Intelligence 8 (1977);Google Scholar
  52. Shortliffe, E.H.: MYCIN: A rule-based computer program for advising physicians regarding antimicrobial therapy selection. AI Laboratory, Memo 251, STANCS-74–465, Stanford University; Winston, EH.: Artificial Intelligence. Addison-Wesley: Reading, MA (1977) Chap. 9Google Scholar
  53. 5.32
    Doyle, J.: A truth maintenance system. Artificial Intelligence 12 (1979) 231–272MathSciNetCrossRefGoogle Scholar
  54. 5.33
    Lenat, D.B./Harris, G.: Designing a rule system that searches for scientific discoveries. In: Waterman, D.A./Hayes-Roth, F. (eds.): Pattern Directed Inference Systems. New York (1978) 26;Google Scholar
  55. Lenat, D.B.: AM: Discovery in mathematics as heuristic search. In: Davis, R./Lenat, D.B. (eds.): Knowledge-Based Systems in Artificial Intelligence. New York (1982) 1–225Google Scholar
  56. 5.34
    Langley, R: Data-driven discovery on physical laws. Cognitive Science 5 (1981) 31–54CrossRefGoogle Scholar
  57. 5.35
    Langley, P./Simon, H.A./Bradshaw, G.L./Zytkow, J.M.: Scientific Discovery: Computational Explorations of the Creative Processes. Cambridge, MA (1987)Google Scholar
  58. 5.36
    Kulkarni, D./Simon, H.A.: The process of scientific discovery: The strategy of experimentation. Cognitive Science 12 (1988) 139–175CrossRefGoogle Scholar
  59. 5.37
    Cf. Winston, EH.: Artificial Intelligence (see Note 31)Google Scholar
  60. 5.38
    Audretsch, J./Mainzer, K. (eds.): Wieviele Leben hat Schrödingers Katze? B.I. Wissenschaftsverlag: Mannheim (1990) 273 (Fig. 5.16a), 274 (Fig. 5.16b), 276 (Fig. 5. 16c )Google Scholar
  61. 5.39
    Penrose, R.: Newton, quantum theory and reality. In: Hawking, S.W./Israel, W: 300 Years of Gravity. Cambridge University Press: Cambridge (1987)Google Scholar
  62. 5.40
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. A400 (1985) 97–117MathSciNetADSzbMATHCrossRefGoogle Scholar
  63. 5.41
    For this chapter compare Mainzer, K.: Computer — Neue Flügel des Geistes? De Gruyter: Berlin (1993);Google Scholar
  64. Mainzer, K.: Philosophical concepts of computational neuroscience. In: Eckmiller, R./Hartmann, G./Hauske, G. (eds.): Parallel Processing in Neural Systems and Computers. North-Holland: Amsterdam (1990) 9–12Google Scholar
  65. 5.42
    McCullock, W.S./Pitts, W: A logical calculus of the ideas immanent in nervous activity. In: Bulletin of Mathematical Biophysics 5 (1943) 115–133;Google Scholar
  66. Arbib, M.A.: Brains, Machines and Mathematics (see Note 10 ) 18Google Scholar
  67. 5.43
    Neumann, J. von: The Computer and the Brain. Yale University Press: New Haven (1958)zbMATHGoogle Scholar
  68. 5.44
    Cf. Burks, A.W. (ed.): Essays on Cellular Automata. University of Illinois Press (1970);Google Scholar
  69. Myhill, J.: The abstract theory of self-reproduction. In: Mesarovic, M.D. (ed.): Views on General Systems Theory. John Wiley (1964) 106–118Google Scholar
  70. 5.45
    Wolfram, S.: Universality and complexity in cellular automata. In: Farmer, D./ Toffoli, T./Wolfram, S. (eds.): Cellular Automata. Proceedings of an Interdisciplinary Workshop. North-Holland: Amsterdam (1984) 1–35;Google Scholar
  71. Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific: Singapore (1986);zbMATHGoogle Scholar
  72. Demongeot, J./Golés, E./Tchuente, M. (eds.): Dynamical Systems and Cellular Automata. Academic Press: London (1985);Google Scholar
  73. Poundstone, W: The Recursive Universe. Cosmic Complexity and the Limits of Scientific Knowledge. Oxford University Press: Oxford (1985)Google Scholar
  74. 5.46
    Mainzer, K.: Komplexität in der Natur. In: Nova Acta Leopoldina NF 76 Nr. 303 (1997) 165–189Google Scholar
  75. 5.47
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc.: Champaign, Ill. (2002) 443Google Scholar
  76. 5.48
    Wolfram, S.: A New Kind of Science (see Note 47) 737Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Klaus Mainzer
    • 1
  1. 1.Lehrstuhl für Philosophie und Wissenschaftstheorie, Institut für Interdisziplinäre InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations