Skip to main content

Fault-tolerant control of continuous-variable systems

  • Chapter
Diagnosis and Fault-Tolerant Control

Abstract

Fault-tolerant control does not yet comprise a unique theoretic framework but employs specific ideas to treat the different problems. This chapter gives an overview of the available methods for dealing with faults in sensors, actuators and within the controlled system. The earlier results on diagnosis are employed to automatically re-design the control law. Small faults can be tackled by fault accommodation, where the controller parameters are adapted to the parameters of the faulty plant. When accommodation cannot be used like in the case of an actuator or sensor break-down, the control loop has to be reconfigured and new controller parameters determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. R. J. Patton. Fault-tolerant control: The 1997 situation. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Hull 1997, pp. 1033–1055.

    Google Scholar 

  2. H. E. Rauch. Autonomous control reconfiguration. IEEE Control Systems Magazine pp. 37–48, December 1995

    Google Scholar 

  3. R. F. Huang, C. Y. Stangel. Restructurable control using proportional-integral implicit model following. J. Guidance, Control and Dynamics, 13: 303–309, 1990.

    Article  Google Scholar 

  4. Z. Gao and P. J. Antsaklis. Stability of the pseudo-inverse method for reconfigurable control systems. International Journal of Control, 53: 717–729, 1991.

    Article  Google Scholar 

  5. K. Zhou, J. C. Doyle and K. Glover. Robust and Optimal Control. Prentice Hall, 1995.

    Google Scholar 

  6. Z. Yang and M. Blanke. The robust control mixer module method for control reconfiguration. American Control Conference, 2000.

    Google Scholar 

  7. Z. Yang, R. Izadi-Zamanabadi and M. Blanke. On-line multiple-model based adaptive control reconfiguration for a class of non-linear control systems Safe-processBudapest 2000

    Google Scholar 

  8. N. E. Wu, Zhang and Zhou. Detection, estimation and accommodation on loss of control effectiveness International Journal of Adaptive Control and Signal Processing2000

    Google Scholar 

  9. Z. Yang and J. Stoustrup. Design of robust reconfigurable control for parametric and additive faults. 39th IEEE Conference on Decision and Control, pp. 41324137, Sydney 2000.

    Google Scholar 

  10. Analysis and Design of Discrete Linear Control SystemsPrentice-Hall 1991

    Google Scholar 

  11. H. H. Niemann and J. Stoustrup. Gain scheduling using the Youla parameterization. IEEE Conference on Decision and Control, pp. 2306–2311, Phoenix 1999.

    Google Scholar 

  12. A. Saberi, A. A. Stoorvogel and P. Sannuti. Exact, almost and optimal input decoupled (delayed) observers. Int. J. Control, 73 (7): 552–582, 2000.

    Article  Google Scholar 

  13. M. Blanke. Consistent design of dependable control systems. Control Engineering Practice, 4 (9): 1305–1312, 1996.

    Article  Google Scholar 

  14. S. A. Bogh. Fault Tolerant Control Systems - A Development Method and Real-Life Case Study. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1997

    Google Scholar 

  15. M. Staroswiecki and M. Bayart. Models and languages for the interoperability of smart instruments. Automatica, 32 (6): 859–873, 1996.

    Article  Google Scholar 

  16. A. L. Gehin and M. Staroswiecki. A formal approach to reconfigurability analysis - Application to the three tank benchmark. Proc. European Control Conference, Karlsruhe 1999.

    Google Scholar 

  17. R. J. Patton. Fault-tolerant control: The 1997 situation. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Hull 1997, pp. 1033–1055.

    Google Scholar 

  18. J. Stoustrup and M. J. Grimble. Integrating control and fault diagnosis: A separation result. IFAC Sym. on Fault Detection, Supervision and Safety for Technical Processes, pp. 323–328, Hull 1997.

    Google Scholar 

  19. J. Stoustrup, M.J. Grimble and H.H. Niemann. Design of integrated systems for control and detection of actuator/sensor faults. Sensor Review 17: 157–168, 1997.

    Article  Google Scholar 

  20. R. J. Veillette, J. V. Medani and W. R. Perkins. Design of reliable control systems. IEEE Trans, AC-37(3): 290–304, 1992.

    Google Scholar 

  21. N. Viswanadham, J. H. Taylor and E. C. Luce. A frequency-domain approach to failure detection and isolation with application to GE-21 turbine engine control system. Control-Theory and Advanced Technology, 3: 45–72, 1987.

    Google Scholar 

  22. S. A. Bogh. Fault Tolerant Control Systems - A Development Method and Real-Life Case Study. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1997

    Google Scholar 

  23. S. A. Bogh, R. Izadi-Zamanabadi and M. Blanke. Onboard supervisor for the orsted satellite attitude control system Artificial Intelligence and Knowledge Based Systems for Space 5th Workshoppp. 137–152, Noordwijk 1995

    Google Scholar 

  24. J. Lunze. Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica, 30 (3): 417–431, 1994.

    Article  Google Scholar 

  25. J. Lunze and F. Schiller. Logic-based process diagnosis utilising the causal structure of dynamical systems. Preprints of IFAC/IFIP/IMACS Int. Symp. on Artificial Intelligence in Real-time Control, pp. 649–654, Delft 1992, pp. 16–18.

    Google Scholar 

  26. W. M. Wonham. A control theory for discrete-event system. In M. J. Denham and A. J. Laub, editors Advanced Computing Concepts and Techniques in Control Engineering pp. 129–169. Springer-Verlag, 1988

    Google Scholar 

  27. M. Sampath, R. Sengupta, S. Lafurtune, K. Sinnamohideen and D. Teneketzis. Failure diagnosis using discrete event models. IEEE Trans, CST-4(2), 1996.

    Google Scholar 

  28. J. Lunze and J. Schröder. Process diagnosis based on a discrete-event description Automatisierungstechnik47(8):358–365, 1999

    Google Scholar 

  29. B. C. Moore. Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. AC-26: 17–32, 1981.

    Google Scholar 

  30. N. E. Wu, K. Zhou and G. Salomon. Reconfigurability in linear time-invariant systems. Automatica 36: 1767–1771, 2000.

    Article  Google Scholar 

  31. M. Blanke, C. W. Frei, F. Kraus, R. J. Patton and M. Staroswiecki. What is fault-tolerant control? IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Budapest 2000, volume 1, pp. 40–51.

    Google Scholar 

  32. M. Staroswiecki, G. Hobbs and A. Aitouche. Fault tolerance analysis of sensor systems. CDC’99, Phoenix, Arizona, Dec 1999.

    Google Scholar 

  33. M. Staroswiecki, G. Hoblos, A. Aitouche. Fault tolerance analysis of sensor systems. IEEE Conf. on Decision and Control, Phoenix 1999.

    Google Scholar 

  34. M. Staroswiecki. 2000.

    Google Scholar 

  35. M. Staroswiecki, S. Attouche and M. L. Assas. A graphic approach for reconfigurability analysis. 10th Int. Workshop on Principles of Diagnosis, Loch Awe 1999.

    Google Scholar 

  36. C. W. Frei. Fault-Tolerant Methods in Anesthesia, PhD Thesis, EHT Zürich, 2000.

    Google Scholar 

  37. C. W. Frei, F. J. Kraus and M. Blanke. Recoverability viewed as a system property. Proc. European Control Conference, Karlsruhe 1999.

    Google Scholar 

  38. M. Staroswiecki and A. L. Gehin. Analysis of system reconfigurability using generic component models. pp. 1157–1162, Swansea - England, September 1998. CONTROL’98.

    Google Scholar 

  39. M. Lind. Modeling goals and functions of complex industrial plants Applied Artificial Intelligence8:259–283, 1994

    Google Scholar 

  40. M. Staroswiecki and A. L. Gehin. Control, fault tolerant control and supervision problems. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Budapest 2000.

    Google Scholar 

  41. K. Zhou, J. C. Doyle and K. Glover. Robust and Optimal Control. Prentice Hall, 1995.

    Google Scholar 

  42. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. Wiley, 1996

    Google Scholar 

  43. H.H. Niemann and J. Stoustrup. Reliable control using the primary and dual Youla parameterization. 41st IEEE Conf. Decision and Control, Las Vegas 2002, pp. 4353–4358.

    Google Scholar 

  44. H.H. Niemann. Robust Control, Fault Diagnosis and Fault-Tolerant Control - a Standard Setup Approach. Lecture Notes. Automation at Q rsted•DTU, 2002

    Google Scholar 

  45. J. Stoustrup and H.H. Niemann. Fault tolerant feedback control using the Youla parameterization. European Control Conference, Porto 2001.

    Google Scholar 

  46. H. Niemann and J. Stoustrup. An Architecture for Fault Tolerant Controllers. Technical University of Denmark, Orsted•DTU, Section of Automation, (submitted for publication ) 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. (2003). Fault-tolerant control of continuous-variable systems. In: Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05344-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05344-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05346-1

  • Online ISBN: 978-3-662-05344-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics