• Harald Ibach
  • Hans Lüth
Part of the Advanced Texts in Physics book series (ADTP)


In our previous discussions of the electronic structure of materials we have assumed the one-electron approximation. The energy levels and the band-structure were calculated for an electron in an effective potential consisting of the potential of the ion cores and an average potential due to the other electrons. Within this model quite acceptable bandstructures can be calculated. However, another aspect of the one-electron model is more important than the qualitative agreement with experiment and the (in principle) simple calculational method: Within the one-electron model it is also possible to understand conceptually the excited states of the electronic system, resulting for example from the interaction with photons and other particles or from thermal excitation. Just as the energy levels of the hydrogen atom serve as a model for describing the energy levels of all elements, so the one-electron model is the basic model for our understanding of the solid state. Furthermore, there are phenomena associated with the collective behavior of the electrons which can nonetheless be tackled within this framework; for example, Thomas-Fermi screening (Sect. 6.5) or the excitation of charge density waves (Sect. 11.9).


Exchange Interaction Curie Temperature Critical Exponent Spin Wave Exchange Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. VI.1 R.W. Damon, J.R. Eshbach: J. Phys. Chem. Solids 19, 308 (1961)CrossRefGoogle Scholar
  2. VI.2 P. Grünberg, W. Zinn. IFF Bulletin 22 ( KFA, Jülich 1983 ) p. 3Google Scholar
  3. VI.3 R.E. Camley, P. Grünberg, C.M. Mayer: Phys. Rev. B. 26, 2609 (1982)ADSCrossRefGoogle Scholar
  4. VII.1 D.L. Abraham, H. Hopster: Phys. Rev. Lett. 58, 1352 (1987)ADSCrossRefGoogle Scholar
  5. VII.2 S.F. Alvarado, M. Campagna, F. Ciccacci, H. Hopster: J. Appl. Phys. 53, 7920 (1982) VII.3 D. Weller, S.F. Alvarado, W. Gudat, K. Schröder, M. Campagna: Phys. Rev. Lett. 54, 1555 (1985)Google Scholar

Chapter 8

  1. 8.1
    R.M. White: Quantum Theory of Magnetism, Springer Ser. Solid-State Sci., Vol. 32 (Springer, Berlin Heidelberg 1983) see also D.C. Mattis: The Theory of Magnetism I and II, Springer Ser. Solid-State Sci., Vols. 17, 55 (Springer, Berlin Heidelberg 1985, 1988 ) T. Moriya: Spin Fluctuations in Itinerant Electron Magnetism, Springer Ser. Solid-State Sci., Vol. 56 ( Springer, Berlin Heidelberg 1985 )Google Scholar
  2. 8.2
    J.F. Janak: Phys. Rev. B 16, 255 (1977)ADSCrossRefGoogle Scholar
  3. 8.3
    J. Callaway, C.S. Wang: Phys. Rev. B7, 1096 (1973)ADSCrossRefGoogle Scholar
  4. 8.4
    P. Weiss, G. Foex: Arch. Sci. Natl. 31, 89 (1911)Google Scholar
  5. 8.5
    P. Weiss, R. Porrer: Ann. Phys. 5, 153 (1926)Google Scholar
  6. 8.6
    H.A. Mook, D. McK. Paul: Phys. Rev. Lett. 54, 227 (1985)ADSCrossRefGoogle Scholar

Further Reading

  1. Chakravarty, A. S.: Introduction to the Magnetic Properties of Solids ( Wiley, New York 1980 )Google Scholar
  2. Crangle, J.: The Magnetic Properties of Solids ( Arnold, London 1977 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Harald Ibach
    • 1
    • 2
  • Hans Lüth
    • 1
    • 2
  1. 1.Institut für Schichten und GrenzflächenForschungszentrum Jülich GmbHJülichGermany
  2. 2.Rheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations