Advertisement

Dynamics of Atoms in Crystals

  • Harald Ibach
  • Hans Lüth
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

The physical properties of a solid can be roughly divided into those that are determined by the electrons and those that relate to the movement of the atoms about their equilibrium positions. In the latter category are, for example, the sound velocity and also the thermal properties: specific heat, thermal expansion, and — for semiconductors and insulators — the thermal conductivity. The hardness of a material is also determined, in principle, by the movement of the atoms about their equilibrium positions. Here, however, structural defects generally play a decisive role.

Keywords

Elastic Tensor Elementary Excitation Dynamical Matrix Reciprocal Lattice Vector Phonon Dispersion Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. III.1
    D.A. Long: Raman Spectroscopy ( McGraw-Hill, New York 1977 )Google Scholar
  2. W. Hayes, R. Loudon: Scattering of Light by Crystals ( Wiley, New York 1987 )Google Scholar
  3. IIL2.
    W. Richter, H. Köhler, C.R. Becker: Phys. Status Solidi B 84, 619 (1977)Google Scholar
  4. IIL3.
    A. Mooradian: In: Light Scattering Spectra of Solids, ed. by G.B. Wright ( Springer, Berlin Heidelberg 1969 ), p. 285Google Scholar
  5. 4.1
    M. Born, R. Oppenheimer: Ann. Phys. (Leipzig) 84, 457 (1927)ADSzbMATHGoogle Scholar
  6. 4.2
    G. Leibfried: In Handbuch der Physik, Vol. 7/1 ( Springer, Berlin Heidelberg 1955 ) p. 104Google Scholar
  7. 4.3
    G. Dolling: In Inelastic Scattering of Neutrons in Solids and Liquids, Vol. II (Intern. Atomic Energy Agency, Vienna 1963 ) p. 37Google Scholar
  8. 4.4
    R.F.S. Hearman: Advances in Physics 5, 323 (1956)MathSciNetADSCrossRefGoogle Scholar
  9. 4.5
    W.A. Brantley: J. App. Phys. 44, 534 (1973)ADSCrossRefGoogle Scholar
  10. 4.6
    G. Simmons, H. Wang: Single crystal elastic constants and calculated aggregate properties; A Handbook, 2nd edn., Cambridge, USA (MIT Press, Cambridge 1971 )Google Scholar

Further Reading

  1. Bak, T.A.: Phonons and Phonon Interactions ( Benjamin, New York 1964 )Google Scholar
  2. Bilz, H., Kress, W.: Phonon Dispersion Relations in Insulators,SpringerGoogle Scholar
  3. Ser. Solid-State Sci., Vol. 10 (Springer, Berlin Heidelberg 1979)Google Scholar
  4. Born, M., Huang, K. H.: Dynamical Theory of Crystal Lattices ( Clarendon, Oxford 1954 )zbMATHGoogle Scholar
  5. Leibfried, G., Breuer, N.: Point Defects in Metals I, Introduction to the Theory, Springer Tracts Mod. Phys. Vol. 81 ( Springer, Berlin Heidelberg 1977 )Google Scholar
  6. Ludwig, W.: Recent Developments in Lattice Theory, Springer Tracts Mod. Phys., Vol. 43 ( Springer, Berlin Heidelberg 1967 )Google Scholar
  7. Maradudin, A. A., Montroll, E. W., Weiss, G. H.: “Theory of Lattice Dynamics in the Harmonic Approximation” in Solid State Physics, Advances and Applications,ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic, New York 1971) Suppl. 3Google Scholar
  8. Wallis, R. F. (ed.): Lattice Dynamics ( Plenum, New York 1965 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Harald Ibach
    • 1
    • 2
  • Hans Lüth
    • 1
    • 2
  1. 1.Institut für Schichten und GrenzflächenForschungszentrum Jülich GmbHJülichGermany
  2. 2.Rheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations