Diffraction from Periodic Structures

  • Harald Ibach
  • Hans Lüth
Part of the Advanced Texts in Physics book series (ADTP)


A direct imaging of atomic structures is nowadays possible using the high-resolution electron microscope, the field ion microscope, or the tunneling microscope. Nonetheless, when one wishes to determine an unknown structure, or make exact measurements of structural parameters, it is necessary to rely on diffraction experiments. The greater information content of such measurements lies in the fact that the diffraction process is optimally sensitive to the periodic nature of the solid’s atomic structure. Direct imaging techniques, on the other hand, are ideal for investigating point defects, dislocations, and steps, and are also used to study surfaces and interfaces. In other words, they are particularly useful for studying features that represent a disruption of the periodicity.


Periodic Structure Lattice Plane Diffraction Experiment Reciprocal Lattice Bragg Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I.1
    C. J. Davidsson, L. H. Germer: Nature 119, 558 (1927); Phys. Rev. 30, 705 (1927)Google Scholar
  2. I.2
    I. Estermann, O. Stern: Z. Phys. 61, 95 (1930)Google Scholar
  3. I.3
    G. Comsa, G. Mehtersheimer, B. Poelsema, S. Tomoda: Surface Sci. 89, 123 (1979)Google Scholar
  4. I.4
    H. H. Stiller: Private communicationGoogle Scholar
  5. I.5
    G. F. Bacon: Neutron Diffraction, 2nd edn. (Oxford Univ. Press. Oxford 1962)Google Scholar
  6. I.6
    C. G. Shull, S. Siegel: Phys. Rev. 75, 1008 (1949)Google Scholar
  7. II.1
    II.1 U. Bonse, W. Graeff, G. Materlik: Rev. Phys. Appl. 11, 83 (1976);CrossRefGoogle Scholar
  8. II.2
    U. Bonse: Private communication (1979)Google Scholar
  9. II.3
    IL2 W. Hartmann: In X-Ray Optics, ed. by H.J. Queisser, Topics Appl. Phys. Vol. 22 (Springer, Berlin, Heidelberg 1977 ) p. 191Google Scholar
  10. II.3 W. Hartmann: Private communicationGoogle Scholar

Chapter 2

  1. 2.1
    K. Urban, P. Kramer, M. Wilkens: Phys. Bl. 42, 373 (1986)CrossRefGoogle Scholar
  2. 2.2
    T.B. Massalski (ed.): Binary Alloy Phase Diagrams, 2nd edn. (American Society for Metals, Metals Park, Ohio 44073, 1990 )Google Scholar
  3. A database is available under the name TAPP of ES Microwave, 2234 Wade Court, Hamilton, OH 45013, USAGoogle Scholar

Further Reading

  1. Burzlaff, H., Thiele, G. (eds.): Kristallographie — Grundlagen und Anwendungen (Thieme, Stuttgart 1977), insbesondere: Burzlaff, H, Zimmermann, H.: “Symmetrielehre”, Bd. IGoogle Scholar
  2. Hamermesh, M.: Group Theory and Its Application to Physical Problems ( Addison-Wesley/Pergamon, London Paris 1962 )zbMATHGoogle Scholar
  3. Heine, V.: Group Theory in Quantum Mechanics ( Pergamon, London 1960 )zbMATHGoogle Scholar
  4. Koster, G.F., Dimmock, J.O., Wheeler, R.G., Statz, H.: Properties of the 42 Point Groups ( MIT Press, Cambridge, MA 1963 )Google Scholar
  5. Streitwolf, H.: Gruppentheorie in der Festkörperphysik ( Akademische Verlagsges., Leipzig 1967 )zbMATHGoogle Scholar
  6. Tinkham, M.: Group Theory and Quantum Mechanics ( McGraw-Hill, New York 1964 )zbMATHGoogle Scholar
  7. Vainshtein, B.K.: Fundamentals of Crystals: Symmetry and Methods of Structural Crystallography, Springer Ser. Modern Crystallography, Vol. 1 ( Springer, Berlin Heidelberg 1994 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Harald Ibach
    • 1
    • 2
  • Hans Lüth
    • 1
    • 2
  1. 1.Institut für Schichten und GrenzflächenForschungszentrum Jülich GmbHJülichGermany
  2. 2.Rheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations