Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 42))

  • 147 Accesses

Abstract

The design of novel, pharmaceutically relevant compounds complementary to a given target binding site has long been considered as the “holy grail” in drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey D, Brown D (2001) High-throughput chemistry and structure-based design: survival of the smartest. Drug Discov Today 6: 57–59

    Article  PubMed  Google Scholar 

  • Blundell T, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Bohacek RS, McMartin C (1994) Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of a de novo design method incorporating combinatorial growth. J Am Chem Soc 116: 5560–5571

    Article  CAS  Google Scholar 

  • Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6: 61–78

    Article  PubMed  Google Scholar 

  • Böhm HJ, Banner DW, Weber L (1999) Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 13: 51–56

    Article  PubMed  Google Scholar 

  • Brady Jr GB, Stouten PFW (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14: 383–401

    Article  PubMed  CAS  Google Scholar 

  • Bruno U, Cole J, Lommerse J, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11: 525–537

    Article  PubMed  CAS  Google Scholar 

  • Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz B, Westhead DR (1995) PRO-LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9: 13–32

    Google Scholar 

  • Clark DE, Firth MA, Murray CW (1996) MOLMAKER: de novo generation of 3D databases for use in drug design. J Chem Inf Comput Sci 36: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Cramer RD, DePriest S (1993) LEAPFROG module, implemented in the SY- BYL program. Tripos Assoc. St. Louis, MO

    Google Scholar 

  • Danziger DJ, Dean PM (1989) Automated site-directed drug design: a general algorithm for knowledge acquisition about hydrogen-regions at protein surfaces. Proc R Soc Lond B Biol Sci 236: 101–114

    Article  PubMed  CAS  Google Scholar 

  • DeWitte RS, Ishchenko AV, Shakhnovich EI (1997) SmoG: de novo design method based on simple, fast, and accurate free energy estimates. 2. Case studies in molecular design. J Am Chem Soc 119: 4608–4617

    Google Scholar 

  • Eddershaw PJ, Beresford AP, Bayliss MK (2000) ADME/PK as part of a rational approach to drug discovery. Drug Discov Today 5: 409–414

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19: 199–221

    Article  PubMed  CAS  Google Scholar 

  • Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, Freer ST (1995) De novo design of enzyme inhibitors by Monte Carlo ligand generation. J Med Chem 38: 466–472

    Article  PubMed  CAS  Google Scholar 

  • Gillet V, Newell W, Mata P, Myatt G, Sike S, Zsoldos Z, Johnson AP (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7: 127–153

    Article  PubMed  CAS  Google Scholar 

  • Gillet VJ, Myatt G, Zsoldos Z, Johnson AP (1995) SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect Drug Discov Des 3: 34–50

    Article  CAS  Google Scholar 

  • Goodford PJ (1985) A computational procedure of determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28: 849–857

    Article  PubMed  CAS  Google Scholar 

  • Grzybowski BA, Ishchenko AV, Kim CY, Topalov G, Chapman R, Christianson DW, Whitesides GM, Shakhnovich EI (2002) Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc Natl Acad Sci USA 99: 1270–1273

    Article  PubMed  CAS  Google Scholar 

  • Hendlich M, Rippman F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule binding sites in proteins. J Mol Graph Model 15: 359–363

    Article  PubMed  CAS  Google Scholar 

  • Hirst JD (1998) Predicting ligand-binding energies. Curr Op Drug Disc Dev 1: 28–33

    CAS  Google Scholar 

  • Ho CM, Marshall GR (1993) FOUNDATION: a program to retrieve all possible structures containing a user defined minimum number of matching query elements from three dimensional databases. J Comput Aided Mol Des 7: 623–647

    Article  CAS  Google Scholar 

  • Honma, T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2001) Structure-based generation of a new class of potent cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44: 4615–4627

    Article  PubMed  CAS  Google Scholar 

  • Johnson AP (2000) Further development and applications of computer programs for de novo ligand design. Astbury Centre for Structural Molecular Biology, annual report

    Google Scholar 

  • Kick EK, Roe DC, Skillman AG, Liu G, Ewing TJA, Sun Y, Kuntz ID, Elhnan JA (1997) Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem Bio! 4: 297–307

    CAS  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33: 889–897

    Article  PubMed  CAS  Google Scholar 

  • Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing surfaces, cavities and intermolecular interactions. J Mol Graph 31: 2735–2748

    Google Scholar 

  • Lauri G, Bartlett PA (1994) CAVEAT: a program to facilitate the design of organic molecules. J Comput-Aided Mol Des 8: 51–66

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC, Davis PC (1992) CLIX: a search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure. Proteins: Structure, Function, and Genetics 12: 31–41

    Google Scholar 

  • Leach AR, Bryce RA, Robinson AJ (2000) Synergy between combinatorial chemistry and de novo design. J Mol Graph Model 18: 358–367

    Article  PubMed  CAS  Google Scholar 

  • Levitt DG, Banaszak LJ (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7: 1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Miranker A, Karplus M (1995) An automated method for dynamic ligand design. Proteins 23: 472–490

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Howe W (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11: 314–328

    Article  PubMed  CAS  Google Scholar 

  • Muegge I, Rarey M (2001) Small molecule docking and scoring. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol. 17. VCH, New York, pp 1–60

    Chapter  Google Scholar 

  • Murray CW, Clark DE, Auton TR, Firth MA, Li J, Sykes RA, Waszkowycz B, Westhead DR, Young SC (1997) PRO-SELECT: combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology. J Comput Aided Mol Des 11: 193–207

    Google Scholar 

  • Nishibata Y, Itai A (1991) Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 41: 8985–8990

    Google Scholar 

  • Pearlman DA, Murcko MA (1996) CONCERTS: dynamic connection of frag- ments as an approach to de novo ligand design. J Med Chem 39: 1651–1663

    Article  PubMed  CAS  Google Scholar 

  • Pegg SCH, Haresco JJ, Kuntz ID (2001) A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15: 911–933

    Article  PubMed  CAS  Google Scholar 

  • Peters KP, Fauck J, Frömmel C (1996) The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol 256: 201–213

    Article  PubMed  CAS  Google Scholar 

  • Roe DC, Kuntz ID (1995) BUILDER v.2: improving the chemistry of a de novo design strategy. J Comput-Aided Mol Des 9: 269–282

    Article  PubMed  CAS  Google Scholar 

  • Rotstein SH, Murcko MA (1993a) GenStar: a method for de novo drug design. J Comput-Aided Mol Des 7: 23–43

    Article  PubMed  CAS  Google Scholar 

  • Rotstein SH, Murcko MA (1993b) GroupBuild: a fragment based method for de novo drug design. J Med Chem 36: 1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Böhm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7: 64–70

    PubMed  CAS  Google Scholar 

  • Schneider G, Schrödl W, Wallukat G, Nissen E, Rönspeck G, Müller J, Wrede P, Kunze R (1998) Peptide design by artificial neural networks and computer-based evolutionary search. Proc Natl Acad Sci USA 95: 12179–12184

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Clement-Chomienne O, Hilfiger L, Schneider P, Kirsch S, Böhm HJ, Neidhart W (2000) Virtual screening for bioactive molecules by evolutionary de novo design. Angew Chem Int Ed Engl 39: 4130–4133

    Article  PubMed  CAS  Google Scholar 

  • Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44: 1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Tame JRH (1999) Scoring functions: a view from the bench. J Comput Aided Mol Des 13: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Todorov NP, Dean PM (1997) Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design. J Comput Aided Mol Des 11: 175–192

    Article  PubMed  CAS  Google Scholar 

  • Tschinke V, Cohen NC (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses. J Med Chem 36: 3863–3870

    Article  PubMed  CAS  Google Scholar 

  • Verdonk ML, Cole J, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289: 1093–1108

    Article  PubMed  CAS  Google Scholar 

  • Verlinde CLMJ, Hol WGJ (1994) Structure-based drug design: progress, results and challenges. Structure 2: 577–587

    Article  PubMed  CAS  Google Scholar 

  • Bless G, Urmann M, Sickenberger B (2001) Medicinal chemistry: challenges and opportunities. Angew Chem Int Ed Engl 40: 3341–3350

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Briem, H. (2003). De Novo Design Methods. In: Waldmann, H., Koppitz, M. (eds) Small Molecule — Protein Interactions. Ernst Schering Research Foundation Workshop, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05314-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05314-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05316-4

  • Online ISBN: 978-3-662-05314-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics