Skip to main content

Electronic Structure and Magnetism of Correlated Systems: Beyond LDA

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 54))

Abstract

The first-principle calculations of electronic structure, different ground state properties and excitation spectra of strongly correlated materials are very important in the modern microscopic theory of magnetism. The magnetic properties of parent high-temperature superconducting oxides, nondoped manganites and different ladder compounds are closely related to the electronic structure of these systems, which appeared to be the Mott insulators [1], due to strong electron-electron interactions. A standard way to investigate the excitation spectrum and magnetic properties of strongly correlated electronic systems is the model-Hamiltonian approach, such as the Hubbard model with several adjustable parameters [2,3]. The physics of the metal-insulator transition and properties of the Mott insulators are well studied in the one-band model with the strongly simplified bare electron spectrum, which is realized for the models with infinite lattice connectivity (d = ∞) [4,5]. To investigate strong interactions in real materials we have to develop a first principles approach that takes into account a complicated crystal structure with several atoms per unit cell, band degeneracy, and other important features of known correlated electron systems. Unfortunately, except for small molecules, it is impossible to solve many-body problem without severe approximations. The most successful first principles method for investigations of electronic structure and magnetism of weakly correlated materials is the density functional theory (DFT) within the local (spin) density approximation (L(S)DA) [6], where the many-body problem is mapped into a noninteracting system with an effective one-electron exchange-correlation potential that is approximated by that of the homogeneous electron gas. The LSDA has proven to be very efficient for many extended systems, such as large molecules and solids. However, it cannot describe adequately correlation effects such as the Mott transition, charge and orbital ordering, heavy fermion physics, and many others [1,3,5,7–10].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.F. Mott, Metal-Insulator Transitions ( Taylor and Francis, London 1974 )

    Google Scholar 

  2. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism ( Springer, Berlin Heidelberg New York 1985 )

    Book  Google Scholar 

  3. F. Gebhard, Mott Metal-Insulator Transition ( Springer, Berlin Heidelberg New York 1997 )

    Google Scholar 

  4. W. Metzner and D. Vollhardt: Phys. Rev. Lett. 62, 324 (1989); A. Georges and G. Kotliar: Phys. Rev. B 45, 6479 (1992); M. Jarrell: Phys. Rev. Lett. 69, 168 (1992)

    Article  Google Scholar 

  5. A. Georges, G. Kotliar, W. Krauth, and M.J. Rosenberg: Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  6. P. Hohenberg and W. Kohn: Phys. Rev. 136 B864 (1964); W. Kohn and L.J. Sham. ibid. 140, A1133 (1965): R.O. Jones and O. Gunnarsson: Rev. Mod. Phys. 61, 689 (1989)

    Article  Google Scholar 

  7. P. Fulde, J. Keller, and G. Zwicknagl, in Solid State Physics, vol. 41 ( Academic Press, New York 1988 ) p. 1

    Google Scholar 

  8. V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein: J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  9. V.I. Anisimov and A.I. Lichtenstein, in: Strong Coulomb Correlations in Electronic Structure Calculations, vol. 1 (Gordon and Beach, 2000 ) p. 97

    Google Scholar 

  10. A.I. Lichtenstein and M.I. Katsnelson, in: Band Ferromagnetism. Ground State and Finite-Temperature Phenomena (Lecture Notes in Physics) ( Springer, Berlin Heidelberg New York 2001 ) p. 75

    Google Scholar 

  11. A. Svane and O. Gunnarsson: Phys. Rev. Lett. 65, 1148 (1990)

    Article  ADS  Google Scholar 

  12. S. Massida, M. Posternak, and A. Baldereschi: Phys. Rev. B 48, 5058 (1993)

    Article  ADS  Google Scholar 

  13. O. Gunnarsson, O.K. Andersen, O. Jepsen, and J. Zaanen: Phys. Rev. B 39 1708 (1989)

    Google Scholar 

  14. V.I. Anisimov and O. Gunnarson: Phys. Rev. B 43, 7570 (1991)

    Article  ADS  Google Scholar 

  15. L. Hedin: Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  16. L. Hedin and S. Lundqvist, in Solid State Physics vol. 23 ( Academic Press, New York 1969 ) p. 1

    Google Scholar 

  17. P. van Gelderen, P.A. Bobbert, P.J. Kelly, and G. Brocks: Phys. Rev. Lett. 85, 2989 (2000)

    Article  ADS  Google Scholar 

  18. F. Aryasetiawan: Phys. Rev. B 46, 13051 (1992)

    Article  ADS  Google Scholar 

  19. R.W. Godby, M. Schlüter, and L.J. Sham: Phys. Rev. B 37, 10159 (1988)

    Article  ADS  Google Scholar 

  20. F. Aryasetiawan and O. Gunnarsson: Phys. Rev. Lett. 74, 3221 (1995)

    Article  ADS  Google Scholar 

  21. V.I. Anisimov, J. Zaanen, and O.K. Andersen: Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  22. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky: Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  23. A.I. Lichtenstein, J. Zaanen, and V.I. Anisimov: Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  24. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar: J. Phys.: Condens. Matter 9, 7359 (1997)

    Article  ADS  Google Scholar 

  25. A.I. Lichtenstein and M.I. Katsnelson: Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  26. P.W. Anderson: Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  27. B.R. Judd, Operator Techniques in Atomic Spectroscopy ( McGraw-Hill, New York 1963 )

    Google Scholar 

  28. F.M.F. de Groot, J.C. Fuggle, B.T. Thole, and G.A. Sawatzky: Phys. Rev. B 42, 5459 (1990)

    Article  ADS  Google Scholar 

  29. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton: Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  30. A.K. McMahan, R.M. Martin, and S. Satpathy: Phys. Rev. B 38, 6650 (1988)

    Article  ADS  Google Scholar 

  31. M.S. Hybertsen, M. Schlüter, and N.E. Christensen: Phys. Rev. B 39, 9028 (1989)

    Article  ADS  Google Scholar 

  32. M. Korotin, T. Fujiwara, and V. Anisimov: Phys. Rev. B 62, 5696 (2000)

    Article  ADS  Google Scholar 

  33. O.K. Andersen: Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  34. O.K. Andersen and O. Jepsen: Phys. Rev. Lett. 53, 2571 (1984)

    Article  ADS  Google Scholar 

  35. H. Sawada, Y. Morikawa, K. Terakura, and N. Hamada: Phys. Rev. B 56, 12154 (1997)

    Article  ADS  Google Scholar 

  36. O. Gunnarsson, O. Jepsen, and O.K. Andersen: Phys. Rev. B 27, 7144 (1983)

    Article  ADS  Google Scholar 

  37. M.I. Katsnelson and A.I. Lichtenstein: J. Phys.: Condens. Matter 11, 1037 (1999)

    Article  ADS  Google Scholar 

  38. K. Takegahara: J. Phys. Soc. Japan 62, 1736 (1992); M.J. Rozenberg: Phys. Rev. B 55, R4855 (1997)

    Google Scholar 

  39. M.I. Katsnelson and A.I. Lichtenstein: Phys. Rev. B 61, 8906 (2000)

    Article  ADS  Google Scholar 

  40. J.E. Hirsch and R.M. Fye: Phys. Rev. Lett. 25, 2521 (1986)

    Article  ADS  Google Scholar 

  41. M. Jarrell and J.E. Gubernatis: Physics Reports 269, 133 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  42. N.E. Bickers and D. J. Scalapino: Annals of Physics 193, 206 (1989)

    Article  ADS  Google Scholar 

  43. G. Esirgren and N.E. Bickers: Phys. Rev. B 57, 5376 (1998)

    Article  ADS  Google Scholar 

  44. M. Fleck, A.I. Liechtenstein, A.M. Oles, L. Hedin, and V.I. Anisimov: Phys. Rev. Lett. 80, 2393 (1998)

    Article  ADS  Google Scholar 

  45. P Lambin and J.P. Vigneron: Phys. Rev. B 29, 3430 (1984)

    Article  ADS  Google Scholar 

  46. H.J. Vidberg and J.W. Serene: J. Low Temp. Phys. 29, 179 (1977)

    Article  ADS  Google Scholar 

  47. H. Keiter and J.C. Kimbal: Phys. Rev. Lett. 25, 672 (1970); N.E. Bickers, D. Cox, and J.W. Wilkins: Phys. Rev. B 36, 2036 (1987)

    Google Scholar 

  48. M.B. Zoelfl, T. Pruschke, J. Keller, A.I. Poteriaev, I.A. Nekrasov, and V.I. Anisimov: Phys. Rev. B 61, 12810 (2000)

    Article  ADS  Google Scholar 

  49. J. Hubbard: Proc. Roy. Soc. A 285, 542 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  50. J. Hubbard: Proc. Roy. Soc. A 276, 238 (1963); V. Y. Irkhin and Y.P. IrkhinPhys. Stat. Sol. B 183, 9 (1994)

    Google Scholar 

  51. M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell et al.: Phys. Rev. B 58, 7475 (1998); M.H. Hettler, M. Mukherjee, M. Jarrell et al.: Phys. Rev. B 61, 12739 (2000)

    Article  Google Scholar 

  52. A.I. Lichtenstein and M.I. Katsnelson: Phys. Rev. B 62, R9283 (2000)

    Article  ADS  Google Scholar 

  53. A.R. Mackintosh and O.K. Andersen, in: Electron at the Fermi Surface, ed. M. Springford ( University Press, Cambridge 1980 ) p. 145

    Google Scholar 

  54. A.I. Liechtenstein, M.I. Katsnelson, and V.A. Gubanov: J. Phys. F 14, L125 (1984); Solid State Commun. 54, 327 (1985); A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov: J. Magn. Magn. Mater. 67, 65 (1987)

    Article  ADS  Google Scholar 

  55. J.M. Luttinger and J.C. Ward: Phys. Rev. 118, 1417 (1960); see also G.M. Carneiro and C. J. Pethick: Phys. Rev. B 11, 1106 (1975)

    Article  Google Scholar 

  56. V.P. Antropov, M.I. Katsnelson, and A.I. Liechtenstein: Physica B 237-238, 336 (1997)

    Article  Google Scholar 

  57. B.N. Harmon, V.P. Antropov, A.I. Lichtenstein, I.V. Solovyev, and V.I. Anisimov: J. Phys. Chem. Solids 56, 1521 (1995)

    Article  ADS  Google Scholar 

  58. A. Liebsch: Phys. Rev. Lett. 43, 1431 (1979); Phys. Rev. B 23, 5203 (1981)

    Article  Google Scholar 

  59. J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, and H. Winter: J. Phys. F 15, 1387 (1985)

    Article  ADS  Google Scholar 

  60. M.M. Steiner, R.C. Albers, and L.J. Sham: Phys. Rev. B 45, 13272 (1992)

    Article  ADS  Google Scholar 

  61. V.Y. Irkhin, M.I. Katsnelson, and A.V. Trefilov: J. Phys.: Condens. Matter 5, 8763 (1993); S.V. Vonsovsky, M.I. Katsnelson, and A.V. Trefilov: Phys. Met. Metallogr. 76, 247, 343 (1993)

    ADS  Google Scholar 

  62. D. Chanderis: J. Lecante, and Y. Petroff, Phys. Rev. B 27, 2630 (1983)

    Article  Google Scholar 

  63. R.E. Kirby, B. Kisker, F.K. King, and E.L. Garwin: Solid State Commun. 56, 425 (1985)

    Article  ADS  Google Scholar 

  64. T. Greber, T.J. Kreuntz, and J. Osterwalder: Phys. Rev. Lett. 79, 4465 (1997); B. Sinkovich et al.: Phys. Rev. Lett. 79, 3510 (1997)

    Article  Google Scholar 

  65. A. Vaterlaus, F. Milani, and F. Meier: Phys. Rev. Lett. 65, 3041 (1990)

    Article  ADS  Google Scholar 

  66. R. Monnier, M.M. Steiner, and L.J. Sham: Phys. Rev. B 44, 13678 (1991)

    Article  ADS  Google Scholar 

  67. G. Treglia, F. Ducastelle, and D. Spanjaard: J. Phys. (Paris) 43, 341 (1982)

    Article  Google Scholar 

  68. J. Igarashi: J. Phys. Soc. Journ. 52, 2827 (1983); F. Manghi, V. Bellini, and C. Arcangelli: Phys. Rev. B 56, 7149 (1997)

    Google Scholar 

  69. W. Nolting, S. Rex, and S.M. Jaya: J. Phys.: Condens. Matter 9, 1301 (1987)

    Article  ADS  Google Scholar 

  70. S. Goedecker: Comp. Phys. Commun. 76, 294 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. J.W. Lynn: Phys. Rev. B 11, 2624 (1975)

    Article  ADS  Google Scholar 

  72. H.A. Mook and R.M. Nicklow: Phys. Rev. B 7, 336 (1973)

    Article  ADS  Google Scholar 

  73. T.G. Peerring, A.T. Boothroyd, D.M. Paul, A.D. Taylor, R. Osborn, R.J. Newport, and H.A. Mook: J. Appl. Phys. 69, 6219 (1991)

    Article  ADS  Google Scholar 

  74. I.A. Nekrasov, M.A. Korotin, and V.I. Anisimov: cond-mat/0009107

    Google Scholar 

  75. I.V. Solovyev, P.H. Dederichs, and V.I. Anisimov: Phys. Rev. B 50, 16861 (1994)

    Article  ADS  Google Scholar 

  76. G.A. Sawatzky and J.W. Allen: Phys. Rev. Lett. 53, 2239 (1984)

    Article  ADS  Google Scholar 

  77. M.L. Knotek and P.J. Feibelman: Phys. Rev. Lett. 40, 964 (1978)

    Article  ADS  Google Scholar 

  78. O.K. Andersen, Z. Pawlowska, and O. Jepsen: Phys. Rev. B 34, 5253 (1986)

    Article  ADS  Google Scholar 

  79. O.K. Andersen, C. Arccangeli, R.W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta: cond-mat/9804166

    Google Scholar 

  80. All calculations were done without downfolding, within the orbital basis of Me(4s,4p,3d) (Me = Ni,Mn,Cu) and O(3s,2p,3d). Logarithmic derivatives of O(3s), O(3d) and Me(3p) bands were fixed to make the E„ and c parameters of the LMTO method equal

    Google Scholar 

  81. One should say that we look at the energy gap between the highest edge of the occupied and the lowest edge of the empty part of Me(3d)-band (Me = Ni,Mn,Cu), because in total DOS the value of energy gap is ti 1 eV due to very low intensive O(3s) band

    Google Scholar 

  82. J. Zaanen, G.A. Sawatzky, and J.W. Allen: Phys. Rev. Lett. 55, 418 (1985)

    Article  ADS  Google Scholar 

  83. J. van Elp, R.H. Potze, H. Eskes, R. Berger, and G.A. Sawatzky: Phys. Rev. B 44, 1530 (1991)

    Article  ADS  Google Scholar 

  84. M.A. Korotin, I.S. Elfimov, V.I. Anisimov, M. Troyer, and D.I. Khomskii: Phys. Rev. Lett. 83, 1387 (1999)

    Article  ADS  Google Scholar 

  85. I.V. Solovyev and K. Terakura: Phys. Rev. B 58, 15496 (1998)

    Article  ADS  Google Scholar 

  86. S.Y. Ezhov, V.I. Anisimov, D.I. Khomskii, and G.A. Sawatzky: Phys. Rev. Lett. 83, 4136 (1999)

    Article  ADS  Google Scholar 

  87. M. Foex: C. R. Acad. Sci. 223, 1126 (1946)

    Google Scholar 

  88. C. Castellani, C.R. Natoli, and J. Raninger• Phys. Rev. B 18, 4945 (1978); 18, 4967 (1978); 18, 5001 (1978)

    Google Scholar 

  89. T.M. Rice, in Spectroscopy of Mott Insulators and Correlated Metals, eds. A. Fujimori and Y. Tokura ( Springer, Berlin Heidelberg New York 1995 ) pp. 221 - 229

    Google Scholar 

  90. J.-H. Park et al. (unpublished)

    Google Scholar 

  91. P.D. Dernier and M. Marezio: Phys. Rev. B 2, 3771 (1970)

    Article  ADS  Google Scholar 

  92. P.D. Dernier: J. Chem. Phys. 31, 2569 (1970)

    Google Scholar 

  93. L.F. Mattheis: J. Phys.: Condens. Matter 6, 6477 (1994)

    Article  ADS  Google Scholar 

  94. I. Solovyev, N. Hamada, and K. Terakura: Phys. Rev. B 53, 7158 (1996)

    Article  ADS  Google Scholar 

  95. A.T. Mizokawa and A. Fujimori: Phys. Rev. B 48, 14150 (1993)

    Article  ADS  Google Scholar 

  96. W. Bao et al.: Phys. Rev. Lett. 78, 507 (1997)

    Article  ADS  Google Scholar 

  97. M.A. Korotin, V.I. Anisimov, T. Saha-Dasgupta, and I. Dasgupta: J. Phys.: Condens. Matter 12, 113 (2000)

    Article  ADS  Google Scholar 

  98. E. Dagotto and T.M. Rice, Science 271, 618 (1996)

    Article  ADS  Google Scholar 

  99. M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka: Phys. Rev. Lett. 73, 3463 (1994)

    Article  ADS  Google Scholar 

  100. Z. Hiroi, M. Takano- Nature 377, 41 (1995)

    Article  ADS  Google Scholar 

  101. E.M. McCarron, M.A. Subramanian, J.C. Calabrese, R.L. Harlow: Mater. Res. Bull. 23, 1355 (1988)

    Article  Google Scholar 

  102. M. Onoda and N. Nishiguchi: J. Solid State Chem. 127, 359 (1996); H. Iwase et al.: J. Phys. Soc. Jpn 65, 2397 (1996)

    Article  Google Scholar 

  103. M. Onoda and A. Ohyama: J. Phys.: Condens. Matter 10, 1229 (1998); P. Millet et al.: Phys. Rev. B 57, 5005 (1998); M. Isobe et al.: J. Phys. Soc. Jpn. 67 755 (1998)

    Article  Google Scholar 

  104. T. Saha-Dasgupta, O.K. Andersen, G. Krier, C. Arcangeli, R.W. Tank, O. Jepsen, and I. Dasgupta (to be published); O.K. Andersen, C. Arcangeli, R.W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen and I. Dasgupta, in Tight-binding Approach to Computational Materials Science eds. P.E.A. Turchi, A. Gonis and L. Colombo, MRS Proc. 491 (Materials Research Society, Warrendale 1998 )

    Google Scholar 

  105. S. Miyahara, M. Troyer, D.C. Johnston, and K. Ueda: J. Phys. Soc. Jpn. 67, 3918 (1998)

    Article  ADS  Google Scholar 

  106. B. Normand, K. Penc, M. Albrecht, and F. Mila, Phys. Rev. B 56, R 5736 (1997)

    Google Scholar 

  107. M.A. Korotin, I.S. Elfimov, V.I. Anisimov, M. Troyer, D.I. Khomskii: Phys. Rev. Lett. 83, 1387 (1999)

    Article  ADS  Google Scholar 

  108. V.I. Anisimov, M.A. Korotin, J. Zaanen, and O.K. Andersen: Phys. Rev. Lett. 68, 345 (1992)

    Article  ADS  Google Scholar 

  109. K.I. Kugel and D.I. Khomskii: Usp. Fiz. Nauk. 136 621 (1982) [Sov. Phys. Usp. 25 231 (1982)]

    Google Scholar 

  110. S.K. Satija, J.D. Axe, G. Shirane, H. Yoshizawa, and K. Hirokawa: Phys. Rev. B 21, 2001 (1980); M.T. Hutchings, H. Ikeda, and J. M. Milne: J. Phys. C Solid State Phys. 12, L739 (1979)

    Article  Google Scholar 

  111. R.M. Kusters, J. Singleton, D.A. Keen, R. McGreevy, and W. Hayes: Physica (Amsterdam) 155B, 362 (1989); A. Urushibara, Y. Moritomo, T. Aima, A. Asamitsu, G. Kido and Y. Tokura: Phys. Rev. B 51, 14103 (1995)

    Google Scholar 

  112. G.H. Jonker and J.H. van Santen: Physica (Amsterdam) 16, 337 (1950); J.H. van Santen and G.H. Jonker: Physica (Amsterdam) 16, 599 (1950)

    Article  ADS  Google Scholar 

  113. C. Zener: Phys. Rev. 82, 403 (1951); P.W. Anderson and H. Hasegava: Phys. Rev. 100, 675 (1955); P.G. de Gennes, Phys. Rev. 118, 141 (1960)

    Article  Google Scholar 

  114. J.B.A.A. Elemans, B. van Laar, K.R. van der Veen, and B.O. Loopstra: J. Solid State Chem. 3, 238 (1971)

    Article  ADS  Google Scholar 

  115. V.I. Anisimov, I.S. Elfimov, M.A. Korotin, K. and Terakura: Phys. Rev. B 55, 15494 (1997)

    Article  Google Scholar 

  116. Z. Jirak, S. Krupicka, V. Nekvasil, E. Poliert, G. Villeneuve, and F. Zounova: J. Magn. Magn. Mater. 15-18, 519 (1980); Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, and Z. Vratislav: ibid. 53, 153 (1985)

    Google Scholar 

  117. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura: Phys. Rev. B 53, R1689 (1996)

    Article  ADS  Google Scholar 

  118. N. Hamada, H. Sawada and K. Terakura, in Spectroscopy of Mott Insulators and Correlated Metals, eds. A. Fujimori and Y. Tokura ( Springer, Berlin Heidelberg New York 1995 ) pp. 95 - 105

    Book  Google Scholar 

  119. W. Pickett and D. Singh: Phys. Rev.B 53, 1146 (1996)

    Article  ADS  Google Scholar 

  120. S. Satpathy, Z. Popovic, and P. Vukajlovic: Phys. Rev. Lett. 76, 960 (1996)

    Article  ADS  Google Scholar 

  121. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg: Nature 372, 532 (1994)

    Article  Google Scholar 

  122. A.P. Mackenzie, S.R. Julian, A.J. Diver, G.J. MacMullan, M.P. Ray, G.G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita: Phys. Rev. Lett. 76, 3786 (1996); A.P. Mackenzie, S.R. Julian, G.G. Lonzarich, Y. Maeno, and T. Fujita: Phys. Rev. Lett. 78, 2271 (1997)

    Article  ADS  Google Scholar 

  123. T. Yokoya, A. Chainani, T. Takahashi, H. Katayama-Yoshida, M. Kasai, and Y. Tokura: Phys. Rev. Lett. 76, 3009 (1996); ibid. 78, 2272 (1997); T. Yokoya, A. Chainani, T. Takahashi, H. Ding, J.C. Campuzano, H. Katayama-Yoshida, M. Kasai, and Y. Tokura: Phys. Rev. B 54, 13311 (1996)

    Article  Google Scholar 

  124. D.H. Lu, M. Schmidt, T.R. Cummins, S Schuppler, F. Lichtenberg, and J.G. Bednorz: Phys. Rev. Lett. 76, 4845 (1996)

    Article  ADS  Google Scholar 

  125. A.V. Puchkov, Z.X. Shen, T. Kimura, and Y. Tokura: Phys. Rev. B 58 R13322 (1998). According to these data, the intensity near M varies strongly with photon energy, suggesting that at 22 eV the xy van Hove singularity is occupied while above 25 eV it is unoccupied

    Google Scholar 

  126. A. Damascelli, D.H. Lu, K.M. Shen et al.: Phys. Rev. Lett. 85 5194 (2000); K.M. Shen, A. Damascelli, D.H. Lu et al., cond-mat/0105487

    Google Scholar 

  127. T. Oguchi: Phys. Rev. B 51, 1385 (1995)

    Article  ADS  Google Scholar 

  128. A. Liebsch and A. Lichtenstein: Phys. Rev. Lett. 84, 1591 (2000)

    Article  ADS  Google Scholar 

  129. I.I. Mazin and D.J. Singh: Phys. Rev. Lett. 79, 733 (1997); D. J. Singh: Phys. Rev. B 52, 1358 (1995)

    ADS  Google Scholar 

  130. A. Fang and K. Terakura, private communication

    Google Scholar 

  131. A.P. Mackenzie, S. Ikeda, Y. Maeno, T. Fujita, R. Julian, and G.G. Lonzarich: J. Phys. Soc. Japan 67, 385 (1998)

    Article  ADS  Google Scholar 

  132. T. Yokoya, A. Chainani, T. Takahashi, H. Katayama-Yoshida, M Kasai, Y. Tokura, N. Shanthi, and D.D. Sarma: Phys. Rev. B 53, 8151 (1996)

    Article  ADS  Google Scholar 

  133. J. Kanamori: Progr. Theoret. Phys. 30, 275 (1963); J. Igarashi, P. Unger, K. Hirai, and P. Fulde: Phys. Rev. B 49, 16181 (1994)

    Google Scholar 

  134. Y. Maeno et al.: J. Low Temp. 105, 1577 (1997)

    Article  ADS  Google Scholar 

  135. V.I. Anisimov, I.A. Nekrasov, D.E. Kondakov, T.M. Rice, and M. Sigrist: cond-mat/0107095

    Google Scholar 

  136. M.B. Zölfl, T. Pruschke, J. Keller, A.I. Poteryaev, I.A. Nekrasov, and V.I. Anisimov: Phys. Rev. B 61, 12810 (2000)

    Article  ADS  Google Scholar 

  137. I.A. Nekrasov, K. Held, N. Blümer, A.I. Poteryaev, V.I. Anisimov, and D. Vollhardt• Eur. Phys. J B 18, 55 (2000)

    Google Scholar 

  138. Kajueter and G. Kotliar: Int. J. Mod. Phys. 11 729 (1997)

    Google Scholar 

  139. E. Müller-Hartmann: Z. Phys. B 57, 281 (1984)

    Article  ADS  Google Scholar 

  140. A. Fujimori et al.: Phys. Rev. Lett. 69, 1796 (1992). A. Fujimori et al.: Phys. Rev. B 46, 9841 (1992)

    Article  Google Scholar 

  141. B. Keimer et al.: Phys. Rev. Lett. 85, 3946 (2000)

    Article  ADS  Google Scholar 

  142. M. Isobe and Y. Ueda: J. Phys. Soc. Japan 65, 1178 (1996)

    Article  ADS  Google Scholar 

  143. Smolinski et al.: Phys. Rev. Lett. 80 5164 (1998)

    Google Scholar 

  144. C. Presura, D. van der Marel, A. Damascelli, and R.K. Kremer: Phys. Rev. B 61, 15762 (2000)

    Article  ADS  Google Scholar 

  145. H. Seo and H. Fukuyama: J. Phys. Soc. Japan 67, 2602 (1998)

    Article  ADS  Google Scholar 

  146. M.V. Mostovoy and D.I. Khomskii: Solid State Commun. 113, 159 (2000)

    ADS  Google Scholar 

  147. H. Nakao et al.: Phys. Rev. Lett. 85, 4349 (2000)

    Article  ADS  Google Scholar 

  148. T. Ohama et al.: J. Phys. Soc. Japan 69, 2751 (2000)

    Article  ADS  Google Scholar 

  149. D. Sa and C. Gros: Eur. Phys. J. B 18, 421 (2000)

    Article  ADS  Google Scholar 

  150. A.N. Yaresko, V.N. Antonov, H. Eschrig, P. Thalmeier, and P. Fulde: Phys. Rev. B 62, 15538 (2000)

    Article  Google Scholar 

  151. D.C. Johnston et al.: Phys. Rev. B 61, 9558 (2000)

    Article  ADS  Google Scholar 

  152. V.V. Mazurenko, A.I. Lichtenstein, M.I. Katsnelson, I. Dasgupta, T. SahaDasgupta, and V.I. Anisimov: cond-mat/0107200

    Google Scholar 

  153. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar: J. Phys.: Condens. Matter 9, 7359 (1997)

    Article  ADS  Google Scholar 

  154. I.A. Nekrasov et al.: Eur. Phys. J. B 18, 55 (2000); M.B. Zoelfl et al.: Phys. Rev. B 61, 12810 (2000)

    Article  Google Scholar 

  155. G. Kotliar, S.Y. Savrasov, and G. Palsson: cond-mat/0010328

    Google Scholar 

  156. O.K. Andersen and T. Saha-Dasgupta: Phys. Rev. B 62, R16219 (2000)

    Article  ADS  Google Scholar 

  157. J. Hubbard: Proc. Roy. Soc. (London) A 281, 401 (1964)

    Article  ADS  Google Scholar 

  158. M. Cuoco, P. Horsch, and F. Mack: Phys. Rev. B 60, R8438 (1999)

    Article  ADS  Google Scholar 

  159. V.Y. Irkhin and M.I. Katsnelson: JETP Lett. 49, 576 (1989); Phys. Lett. A 150, 47 (1990)

    Article  ADS  Google Scholar 

  160. A. Langari, M.A. Martin-Delgado, and P. Thalmeier: Phys. Rev. B 63, 054432 (2001)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lichtenstein, A.I., Anisimov, V.I., Katsnelson, M.I. (2003). Electronic Structure and Magnetism of Correlated Systems: Beyond LDA. In: Singh, D.J., Papaconstantopoulos, D.A. (eds) Electronic Structure and Magnetism of Complex Materials. Springer Series in Materials Science, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05310-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05310-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07774-6

  • Online ISBN: 978-3-662-05310-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics