Skip to main content

Robust Geodetic Parameter Estimation Under Least Squares Through Weighting on the Basis of the Mean Square Error

  • Chapter
Geodesy-The Challenge of the 3rd Millennium

Abstract

A technique for the robust estimation of geodetic parameters under the least squares method when weights are specified through the use of the mean square error is presented. The mean square error is considered in the specification of observational weights instead of the conventional approach based on the observational variance. The practical application of the proposed approach is demonstrated through computational examples based on a geodetic network. The results indicate that the least squares estimation with observational weights based on the mean square error is relatively robust against outliers in the observational set, provided the network (or the system) under consideration has a good level of reliability, as to make the network (or system) stable under estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aduol, F.W.O., 1994. Robust geodetic parameter estimation through iterative weighting. Survey Review, 32, 252: 359–367.

    Article  Google Scholar 

  2. Baarda, W., 1967. Statistical concepts in geodesy. Netherlands Geodetic Commission, publications on Geodesy, New Series, Vol. 2, No. 4, Delft.

    Google Scholar 

  3. Baarda, W., 1968a. Statistics — a compass for the land surveyor. Computing Centre of the Delft Geodetic Institute.

    Google Scholar 

  4. Baarda, W., 1968b. A testing procedure for use in geodetic networks. Netherlands Geodetic Commission, publications on Geodesy, New Series, Vol. 2, No. 5, Delft.

    Google Scholar 

  5. Borutta, H. 1988. Robuste Schätzverfahren für geodätische Anwendungen. Schriftenreihe Studiengang Vermessungswesen Universität der Bundeswehr München, Heft 33. München.

    Google Scholar 

  6. Grafarend, E.W., Schaffrin, B., 1993. Ausgleichungsrechnung in linearen Modellen. Wissenschaftsverlag, Mannheim. Pp. 116–117.

    Google Scholar 

  7. Hampel, RR., Ronchetti, E.M., Rousseeuw, R, and Stahel, W.A., 1986. Robust Statistics — the Approach based on Influence Functions. John Wiley & Sons, New York.

    Google Scholar 

  8. Huber, P.J., 1964. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35: 73–101.

    Article  Google Scholar 

  9. Huber, P.J., 1972. Robust statistics — A review. Annals of Mathematical Statistics, 43: 1041–1067.

    Article  Google Scholar 

  10. Huber, P.J., 1981. Robust Statistics. John Wiley & Sons, New York.

    Book  Google Scholar 

  11. Toutenburg, H., 1992. Lineare Modelle. Physica Verlag, Heidelberg. Pp 35–36.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aduol, F.W.O. (2003). Robust Geodetic Parameter Estimation Under Least Squares Through Weighting on the Basis of the Mean Square Error. In: Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds) Geodesy-The Challenge of the 3rd Millennium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05296-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05296-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07733-3

  • Online ISBN: 978-3-662-05296-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics