Contrast and Signal-to-Noise Ratio

  • Marinus T. Vlaardingerbroek
  • Jacques A. den Boer


In an MR image, information is contained in the variation across the image of one single parameter: the grey level, which is a proportional to the signal level at that position. This parameter, called contrast, is the result of three properties of the imaged tissue: the proton density, ρ; the spin—lattice relaxation time, T 1; and the spin—spin relaxation time, T 2. It is therefore necessary to understand how the contrast depends, for a certain scan sequences, on the properties of the tissue in order to recognize the diagnostic information in the image. This is the topic of Sect. 6.2. In Sect. 6.3 a survey is given of the basic physics of relaxation. This survey is not meant to be complete (there is excellent literature available [1, 4.2]) but it is also needed in order to introduce two techniques which influence the values of the relaxation constants, namely magnetization transfer (Sect. 6.3.3) and contrast agents (Sect. 6.3.4).


Contrast Agent Relaxation Rate Noise Figure Magnetization Transfer Temporo Mandibular Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artifacts in Magnetic Resonance Imaging, R.M. Henkelman, M.J. Bronskill Reviews of Magn. Res. Im., 2 (1), 1987Google Scholar
  2. 2.
    Magnetic Resonance Imaging: Cardiovascular System C.G. Blackwell, G.B. Cranney, G.M. Prohost, Gower Medical Publishing, New York, 1992. ISBN 1–56375–000–7Google Scholar
  3. 3.
    Magnetic Resonance Angiography, Concepts and Applications E.J. Potchen, E.M. Haacke, J.E. Siebert, A. Godschalk, Mosby, St Louis, 1993. ISBN 1–55664270–9Google Scholar
  4. 4.
    Motion Triggered Cine SIR Imaging of Active Joint Movement, U.H. Melchert, C. Schröder, J. Brossmann, C. Muhle Magn. Res. Im., 10, pp. 457–460, 1992Google Scholar
  5. 5.
    Functional MRI” of the Patellofemoral Joint: Comparison of Ultra Fast MRI, Motion Triggered MRI and Static MRI, C. Muhle, J. Brossmann, U. Melchert, C. Schröder, R. de Boer European Radiology, 1995Google Scholar
  6. 6.
    Adaptive Technique for High Resolution MR Imaging of Moving Structures Navigator Echoes, R.L. Edelmann, J.P. Fefmlee Radiology, 173, pp. 255–263, 1989Google Scholar
  7. 7.
    Optimum Electrocardiographic Electrode Placement for Cardiac Gated MRI, R.N. Dunich, L.W. Hedlund, R.J. Herfkens, E.K. Fram, J. Utz Investigative Radiology, 22, pp. 17–22, 1987Google Scholar
  8. 8.
    Retrospective Cardiac Gating: a Review of Technical Aspects and Future Directions, G.W. Lenz, E.M. Haacke, RD. White Magn. Res. Im.,7, pp. 445–455, 1989Google Scholar
  9. 9.
    MR Angiography with Pulsatile Flow, R.G. de Graaf, J.P. Groen Magn. Res. Im., 10, pp. 23–34, 1992Google Scholar
  10. 10.
    Coronary Arteries Breath-hold MR Angiography, R.R. Edelman, W.J. Manning, D. Bursten, S. Pauli Cardiac Radiology, 181, pp. 641–643, 1991Google Scholar
  11. 11.
    Three-dimensional MR Imaging of the Coronary Arteries: Preliminary Clinical Experience, C.B. Parschal, E.M. Haacke, L.P. Adler J. Magn. Res. Im., 3, pp. 491–500, 1993Google Scholar
  12. 12.
    Fast Spiral Coronal Imaging, C.H. Meyer, B.S. Hu, D.G. Nishimura, A. Mackovski Magn. Res. in Med.,28, pp. 202–213, 1992Google Scholar
  13. 13.
    Suppression of Respiratory Motion Artifacts in MRI, M.L. Wood, R.M. Henkel-man Med. Phys., 13 (6), pp. 794–805, 1986Google Scholar
  14. 14.
    Respiratory Motion of the Heart, Kinematics and the Implications for the Spatial Resolution in Coronary Imaging, Yi Wang, S.J. Riederer, R L Ehman Magn. Res. in Med.,33, 713–719, 1995Google Scholar
  15. 15.
    Two Dimensional Coronary MR Angiography without Breathholding, J.N. Oshinski, L.H. Hofland, S. Mukumdan, W.T. Dixon, W.J. Parks, R.I. Pettigrew Radiology, 201, 737–743, 1996Google Scholar
  16. 16.
    Prospective Adaptive Navigator Correction for Non Breathhold MR Coronary Angiography, M.V. McConnel, V.C. Khasgiwala, B.J. Savord, M.H. Chen, M.L. Chuang, R.R. Edelman, W.J. Manning Magn. Res. in Med,37, 148–152, 1997Google Scholar
  17. 17.
    True Myocardial Motion Tracking, S.F. Fischer, G.C. McKinnon, SIB. Scheidegger, W. Prins, D. Meier, P. Boesiger, Magn. Res. in Med.,31, 401–413, 1994Google Scholar
  18. 18.
    Magnetic Resonance Angiography, D.G. Nishimura, A. Macovski, J. Pauly IEEE Trans. MI, 5 (3), pp. 140–151, 1986Google Scholar
  19. 19.
    Motion Induced Phase Shifts in MR, M. Kouwenhoven, M.B.M. Hofman, M. Sprenger Magn. Res. in Med.,33, 766–777, 1995Google Scholar
  20. 20.
    Vascular Diagnostics P. Lanser, J. Rösch, Springer Verlag, Heidelberg 1994, pp. 375–400. ISBN 3–540–57939–7Google Scholar
  21. 21.
    Physical Principles and Applications of MRA, J.E. Siebert, E.J. Potchen Seminars in US, CT and MRI, 13 (4), pp. 227–245, 1992Google Scholar
  22. 22.
    Quantitative NMR Imaging of Flow, J.M. Pope and S. Yao Concepts in Magnetic Resonance, 5, pp. 281–302, 1993Google Scholar
  23. 23.
    Encoding Strategies for Three Direction Phase Contrast MR Imaging of Flow, N.J. Pelc, M.A. Bernstein, A. Shimakawa, G.H. Glover, J. Magn. Res. Im., 1, pp. 405–413, 1991Google Scholar
  24. 24.
    D Flow Visualization in Phase Contrast Angiography, J.F.L. De Becker, M. Fuderer, M. Kouwenhoven SMR Abstracts, 1993, p. 450Google Scholar
  25. 25.
    Flow Velocity Quantification in Human Coronary Arteries with Fast Breath-Hold MR Angiography, R.R. Edelman, W.J. Manning, E. Cervino, W. Li J. Magn. Res. Im., 3, pp. 699–703, 1993Google Scholar
  26. 26.
    The Application of Breath Hold Phase Velocity Mapping Techniques to the measurement of Coronary Artery Blood Flow Velocity, J. Keegan, D. Firmin, P. Gatehouse, D. Longmore Magn. Res. in Med.,31, pp. 526–536, 1994Google Scholar
  27. 27.
    Coronary Artery Imaging in Multiple 1-sec. Breath Holds, M. Doyle, M.B. Scheidegger, R.G. de Graaf, J. Vermeulen, G.M. Pohost Magn. Res. Im., 11, pp. 3–6, 1993Google Scholar
  28. 28.
    Contrast enhanced MR Angiography, Methods, Limitations and Possibilities, M. Kouwenhoven, Acta Radiologica,38, 1997. ISBN 87–16–15614–5Google Scholar
  29. 29.
    Time Resolved Contrast Enhanced 3D MR Angiography, F.R. Korosec, R. Frayne, T.M. Grist, C.A. Mistretta Magn. Res. in Med.,36, pp. 345–351, 1996Google Scholar
  30. 30.
    Dynamic Gd:DTPA Enhanced 3DFT Abdominal MR Angiography, M.R. Prince, E.K. Yucel, J.A. Kaufman, A.C. Waltman J. Magn. Reson. Imaging,3, p.877 (1993)Google Scholar
  31. 31.
    Automated Detection of Bolus Arrival and Initiation of Data Acquisition in Fast, Three-Dimensional, Gadolinium-enhanced MR Angiography, T.K.F. Foo, M. Saranathan, M.R. Prince, T.L. Chenevert Radiology, 203, pp. 275–280 (1997)Google Scholar
  32. 32.
    Improved MTC Angiography with Spatially Varying Off-Resonance Frequency, M. Kouwenhoven, L. Hofland, R.W. de Boer, J.J. van Vaals, Proceedings 12th Annual Meeting SMRM, p. 383, 1993Google Scholar
  33. 33.
    Perfusion Imaging, D.A. Detre, J.S. Liegh, D.S. Williams, A.P. Koretsky Magn. Res. Med., 23, pp. 37–45, 1991Google Scholar
  34. 34.
    Multiple Readout Selective Inversion Recovery Angiography, S.J. Wang, D.G. Nishimura, A. Mackovski, Magn. Res. in Med., 17, pp. 244–251, 1991Google Scholar
  35. 35.
    Breath-Hold 3D STAR Angiography of the renal Arteries Using Segmented Echo Planar Imaging, P.A. Wielopolski, M. Adamis, P. Prasad, J. Gaa, R.R. Edelman, Magn. Res. in Med.,33, pp. 432–438, 1995Google Scholar
  36. 36.
    Fast Selective Black Blood MR Imaging, R.R. Edelman, D. Chien, D. Kim, Radiology 181, pp. 655–660, 1991Google Scholar
  37. 37.
    A Method for Tip imaging, R.E. Sepponen, J.A. Pohjonen, J.T. Sipponen, J.I. Tanntu, J. Comput. Assist. Tomogr.,9, pp. 1007–1011, 1995Google Scholar
  38. 38.
    Myocardial Suppression in vivo by Spin Locking with Composite Pulses, W.T. Dixon, J.N. Oshinski, J.D. Trudeau, B.C. Arnold, R.I. Pettigrew, Magn. Res. in Med.,36, pp. 90–94, 1996Google Scholar
  39. 39.
    Comparison of four Magnetization Preparation Schemes to Improve Blood-Wall Contrast in Cine Short Axis Cardiac Imaging, S.I.K. Semple, R.W. Redpath, F.I. McKiddie, G.D. Waiter, Magn. Res. in Med.,39, pp. 291–199, 1998Google Scholar
  40. 40.
    Flow-Independent Magnetic Resonance Projection Angiography, G.A. Wright, D.G. Nishimura, A. Mackovski, Magn. Res. in Med., 17, pp.126–140, 1991Google Scholar
  41. 41.
    Three-Dimensional Flow-Independent Peripheral Angiography, J.H. Brittain, E.W. Olcott, A. Szuba, G.E. Gold, G.A. Wright, P. Irarrasaval, D.G. Nishimura, Magn. Res. in Med.,38, pp. 343–354, 1997Google Scholar
  42. 42.
    Black Blood Imaging, W. Lin, E.M. Haacke, R. Edelman, pp. 160–172 of Ref. [7.3]Google Scholar
  43. 43.
    Private communication, S.M.J.J.G. Nijsten and D. Kaandorp, Technical University EindhovenGoogle Scholar
  44. 44.
    The Effects of Time Varying Intravascular Signal Intensity and k-Space Acquisition Order on Three-Dimensional MR Angiography Image Quality. J.H. Maki, M.R. Prince, F.J. Londy, T.L. Chenevert, J. Magn. Reson. Im., 6, pp. 642–651, 1996Google Scholar
  45. 45.
    Measurement of Coronary Flow using Time of Flight echo Planar MRI, B. Poncelet, R.M. Weisskoff, V.J. Wedeen, T.J. Brady, H. Kantor Proc SMRM 1993Google Scholar
  46. 46.
    Tracer Kinetic Methods in Medical Physiology N.A. Lassen, W. Perl (Raven Press, New York 1979)Google Scholar
  47. 47.
    Assessment of Cerebral Blood Volume with Dynamic Susceptibility Contrast Enhanced Gradient Echo Imaging, F. Gückel, G. Brix, K. Rempp, M. Deimling, J. Rother, M. Georgi J. Comp. Aided Tomography, 18, pp. 344–351, 1994Google Scholar
  48. 48.
    High-Resolution Measurement of Cerebral Blood Flow using Intravascular Tracer Bolus Passage. Part I: Mathematical Approach and Statistical Analysis; Part II: Experimental Comparison and Preliminary Results, L. Ostergaard, A.G. Sörensen, K.K. Kwong, R.M. Weisskoff, C. Gyldenstad, BR Rosen Mag. Res. Med., 36, pp. 715–736, 1996Google Scholar
  49. 49.
    Functional Brain Imaging W.W. Orrison, J.D. Lewine, A. Sanders, M.E. Hartshorne, Editors (Mosby, St Louis 1995), ISBN 0–8151–6509–9, p. 270Google Scholar
  50. 50.
    Susceptibility Contrast Imaging of Cerebral Blood Volume: Human Experience. B.R. Rosen, J.W. Belliveau, H.J. Aronen, D. Kennedy; B.R. Buchbinder, A. Fischman, M. Gruber, J. Glas, R.M. Weisskoff, M.S. Cohen, et al., Magn. Reson. Med., 22, pp. 293–299, 1991Google Scholar
  51. 51.
    MR Contrast Due to Intravascular Magnetic Susceptibility Perturbations. J.L. Boxerman, L.M. Hamberg, B. Rosen, R.M. Weiskoff, Mag. Res. Med., 34, pp. 555–566, 1995CrossRefGoogle Scholar
  52. 52.
    Clinical MR Diffusion/Perfusion Protocol for Hyperacute Stroke, M. Moseley, A. De Crespigny, D. Tong, M. O’Brien, K. Butts, G. Albers, M. Marks Proc. ISMRM 4th scientific meeting, p. 567, 1997Google Scholar
  53. 53.
    Magnetic Resonance Imaging of Perfusion Using Spin Inversion of Arterial Water. D.S. Williams, J.A. Detre, J.S. Leigh, A.P. Koretsky, Proc. Natl. Acad. Science, USA, 89, pp. 212–216, 1992Google Scholar
  54. 54.
    Tissue Specific Perfusion Imaging Using Arterial Spin Labelling, J.A. Detre, W. Zhang, D.A. Roberts, A.C. Silva, D.S. Williams, D.J. Grandis, A.P. Koretsky, J.S. Leigh NMR Biomed., 7, pp. 75–82, 1994CrossRefGoogle Scholar
  55. 55.
    Qualitative Mapping of Cerebral Blood Flow and Functional Localisation with Echo-Planar MR Imaging and Signal Targeting with Alternating Radio Frequency, R.R. Edelman, B. Siewert, D.G. Darby, V. Thangaraj, A.C. Nobre, M.M. Mesulam, S. Warach Radiology, 192, pp. 513–520, 1994Google Scholar
  56. 56.
    Slice Profile Effects in Adiabatic Inversion: Application to Multi-Slice Perfusion Imaging, L.R. Frank, E.C. Wong, R.B. Buxton, Magn. Res. in Med.,38, pp. 558–564, 1997Google Scholar
  57. 57.
    Dynamic Magnetic Resonance Imaging of the Human Brain Activity During Primary Sensory Stimulation, K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskopf, D. Poncelet, B.E. Hoppel et al. Proc. Natl Acad. Science (USA), 89, pp. 5675–5679, 1992Google Scholar
  58. 58.
    Correction for Vascular Artifacts in Cerebral Blood Flow Values Measured by using Arterial Spin Tagging Techniques, F.Q. Ye, V.S. Mattay, P. Jezzard, J.A. Frank, D.R. Weinberger, A.C. McLaughlin Mag. Res. in Med.,37, pp. 226–235, 1997Google Scholar
  59. 59.
    Spin Diffusion Measurements: Spin Echoes in the Presence of a Time Dependent Field Gradient, E.O. Stejskal and J. E. Tanner Journal of Chemical Physics, 42 (1), pp. 288–292, 1965Google Scholar
  60. 60.
    Molecular Diffusion Nuclear Magnetic Resonance Imaging, D. le Bihan M.R. Quarterly, 7 (1), pp. 1–30, 1991Google Scholar
  61. 61.
    Imaging of Diffusion and Microcirculation with Gradient Sensitization, Design, Strategy and Significance, D. le Bihan, R. Turner, C.T.W. Moonen, J. Pekar J. Magn. Res. Im., 1, pp. 7–28, 1991Google Scholar
  62. 62.
    Isotropic Diffusion-Weighted and Spiral Navigated Interleaved EPI for Routine Imaging of Acute Stroke, K. Butts, J. Pauly, A. de Crespigny, M. Moseley Magn. Res. in Med.,38, pp. 741–749, 1997Google Scholar
  63. 63.
    Optimized Isotropic Diffusion Weighting, E.C. Wong, R.W. Cox, A.,W. Song Magn. Res. in Med.,34, pp. 139–143, 1995Google Scholar
  64. 64.
    MR Imaging of Motion with Spatial Modulation of Magnetization, L. Axel, L. Dougherty, Radiology, 171, pp. 841–845, 1989Google Scholar
  65. 65.
    Improved Myocardial Tagging Contrast, S.E. Fisher, G.C. McKinnon, S.E. Maier, P. Boesiger, Magn. Res. in Med.,30, pp. 191–200, 1993Google Scholar
  66. 66.
    Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography, K.Y. Ho, T. Leiner, M.W. de Haan, A.G. Kessels, P.J. Kitslaar, J.M. van Engelshoven, Radiology 206, pp. 683–692, 1998Google Scholar
  67. 67.
    Three-Dimensional Flow Independent Angiography of Aortic Aneurisms using Standard Fast Spin Echo, D.W. Kaandorp, P.F.F. Wijn, K. Kopinga, Proc. ISMRM, Sydney, 1998, p. 792Google Scholar
  68. 68.
    MR Perfusion and Diffusion Imaging in Ischaemic Brain Disease, J.A. den Boer, P. Folkers, Medica Mundi, 41, pp. 21–35, 1997Google Scholar
  69. 69.
    Multislice Functional Perfusion Imaging Using a Magnetisation Transfer Insensitive Labeling Technique, X.Golay, M. Stuber, K. Pruessmann, R. Luechinger, O.M. Weber, M.B. Scheidegger, D. Meier, P. Boesiger, Proc. 6th Scientific Meeting ISMRM, Sydney, 1998; p. 1206Google Scholar
  70. 70.
    Transfer Insensitive Labelling Technique (TILT). X. Golay, M Stuber, K.P. Preussmann, D. Meier, P. Boesiger, Mag. Res. in Med,to be publishedGoogle Scholar
  71. 71.
    Transfer Insensitive Labelling Technique (TILT): Application to Multislice Functional Perfusion Imaging. X. Golay, M. Stuber, K.P Preussmann, D. Meier, P. Boesiger, Journ. of Magn. Res Im., 9, pp. 454–462, 1999Google Scholar
  72. 72.
    Diffusion Tensor MR Imaging of the Brain. C. Pierpaoli, J.P. Jezzard, P.J. Basser, A. Barnett, G. DiChiro, Radiology, 201, pp. 637–648, 1996Google Scholar
  73. 73.
    Simultaneous Tagging and Through-Plane Velocity Quantitation: a 3D Myocardial Tracking Algorithm, J.P.A. Kuyer, J.T. Marcus, M.J.W. Goette, A C. van Rossum, R.M. Heethaar, Journ. of Magn Res. Im.,9, pp. 409–419, 1999Google Scholar
  74. 74.
    Measurement of Rat Brain Perfusion by NMR using Spin Labelling of Arterial Water: In-Vivo Determination of the Degree of Spin Labelling, W. Zhang, D.S. Williams, A.P. Koretski, Magn. Res in Med., 29, pp. 416–421, 1993Google Scholar
  75. 75.
    Variations in Blood Flow Waveforms in Stenotic Renal Arteries by 2D Phase Contrast Cine MRI, J.J.M. Westenberg, M.N.J.M. Wasser, R.J. v.d. Geest, P.M.T. Pattynama, A. de Roos, J. Vanderschoot, J.H.C. Reiber, Journ. of Magn. Res. Im., 8, pp. 590–597, 1998Google Scholar
  76. 76.
    MR Angiography of Occlusive Disease of the Arteries in Head and Neck: Current Concepts, B.C. Bouwen, R.M. Quencer, P. Margosian, P.M. Pattany, Am. Journ. of Radiology, 162, pp. 9–18, 1994Google Scholar
  77. 77.
    MR Angiography of Normal Pelvic Arteries: Comparison of Signal Intensity and Contrast to Noise Ratio for Three Different Inflow Techniques, K. Yucel, M.S. Silver, A P. Carter, Am. Journ. of Radiology, 163, pp. 197–201, 1994Google Scholar
  78. 78.
    Selective Projection Imaging: Application to Radiography and NMR, A. Mackovski, IEEE Trans. on Med. Im., MI-1, pp. 42–47, 1982Google Scholar
  79. 79.
    Pulsed Field Gradient Nuclear Magnetic Resonance as a tool for Studying Translational Diffusion, Part I, Basic Theory. W.C. Price, Concepts Magn. Resonance, 9, pp. 299–336, 1997Google Scholar
  80. 80.
    Restricted Self Diffusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin Echo Method, J.E. Tanner and E.O. Stejskal, Journal of Chem. Physics, 491, pp. 1768–1777, 1968Google Scholar
  81. 81.
    Principles and Application of Self Diffusion Measurements by Nuclear Magnetic Resonance, J. Kärger, H. Pfeifer, W. Heink, Adv. Magnetic Resonance, 12, pp. 1–89, 1988Google Scholar
  82. 82.
    Restricted Diffusion and Exchange of Intracellular Water: Theoretical Modeling and Diffusion Time Dependence of 1H NMR Measurements on Perfused Glial Cells, J. Pfeuffer, U. Flögel, W. Dreher, D. Leibfritz, NMR in Biomedicine, 11, pp. 19–31, 1998Google Scholar
  83. 83.
    NMR Imaging of Materials (Monographs on the Physics and Chemistry of Materials), B. Blümich, (Oxford Science Publications, Oxford), 2000. ISBN 0 19 850683 XGoogle Scholar
  84. 84.
    Principles of Nuclear Magnetic Resonance Microscopy, P.T. Callaghan (Clarendon Press, Oxford, 1991)Google Scholar
  85. 85.
    NMR Tomography, Diffusometry, Relaxometry,R. Kimmich (Springer Verlag, Berlin, Heidelberg, New York, 1997)Google Scholar
  86. 86.
    Emphysema: Hyperpolarized Helium 3 Diffusion Imaging of the Lungs, Compared with Spirometric Indices, Initial Experience, M. Salermo, E. E. de Lange, T.A. Altes, J.D. Truwitt, J.R. Brookman, J.P. Muggier III, Radiology, 22, p. 252, 2001Google Scholar
  87. 87.
    A General Kinetic Model for Quantitative Perfusion Measurement with Arterial Spin Labeling, R.B. Buxton, L.R. Frank, E.C. Wong, B. Siewart, S. Warach, R.R. Edelman, Magn. Res. in Med.,40, pp. 383–396, 1998Google Scholar
  88. 88.
    Novel Real-Time R-Wave Detection Algorithm Based on the Vector Cardiogram for Accurate Gated Magnetic Resonance Acquisition, S.E. Fisher, S.A. Wickline, C.H. Lorentz, Magn. Res. in Med.,42, p. 361, 1999Google Scholar
  89. 89.
    High b-Value Diffusion Weighted MRI of Normal Brain, J.H. Burdette, D.D. Durden, A.D. Elster, Y.F. Yen, J. Comp. Ass. Tomography, 25, p. 515, 2001Google Scholar
  90. 90.
    The Value of b Required to Avoid T2 Shine Through from Old Lacunar Infarcts in Diffusion Weighted Imaging, B. Geijer, P.C. Sundgren, A. Lindgren, S. Brocksted, F. Stahlberg, S. Holtas, Neuroradiology,43, p. 511, 2001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marinus T. Vlaardingerbroek
    • 1
  • Jacques A. den Boer
    • 2
  1. 1.The Netherlands
  2. 2.The Netherlands

Personalised recommendations