Advertisement

Transient-State Gradient-Echo Imaging

  • Marinus T. Vlaardingerbroek
  • Jacques A. den Boer
Chapter

Abstract

The steady-state existing in SE, FE, and FFE imaging methods is the consequence of the strict periodicity of the sequence. Quite commonly, in these steady-state methods the first repetitions of the sequence are used not for the acquisition of data, but only to run in the steady state.

Keywords

Flip Angle Transverse Magnetization Inversion Pulse Longitudinal Magnetization Preparation Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Relaxation Effects in Nuclear Magnetic Resonance Absorption, Bloembergen, Pound, Purcel Phys. Rev., 73, p. 679, 1948Google Scholar
  2. 2.
    Magnetic Resonance Imaging,D. Stark and W.G. Bradley (editors), Mosby Year Book, St. Louis, 1992Google Scholar
  3. 3.
    Simultaneous Measurement of Regional Blood Volume and Capillary Water Permeability with Intravascular MR Contrast Agents, C. Schwarzbauer, S.P. Morissey, R. Deichmann, H. Adolf, U. Noth, K.V. Toyka, A. Haase, Proc. ISMRM, New York 1996, p. 1577Google Scholar
  4. 4.
    Design and Implementation of Magnetization Transfer Sequences for Clinical Use, J.V. Hajnal, C.J. Bandom, A. Oatridge, I.R. Young, G.M. Bydder J. of Computer Assisted Tomography, 16, pp. 7–18, 1992Google Scholar
  5. 5.
    Turbo-Mix T1 Measurements and MTC exchange Rate Kfor Calculations, R.W. de Boer, A. Eleveld SMRM Abstracts,1993, p. 175Google Scholar
  6. 6.
    Quantitative 1H Magnetization Transfer Imaging in Vivo,J. Eng, T.L. Ceckler, R.S, Balaban, Magn. Res. in Med.,17, 304–314, 1991Google Scholar
  7. 7.
    Magnetization Transfer Contrast with Periodic Pulsed Saturation, H.N. Yeung, A.M. Aisen, Radiology, 183, 209–214, 1992Google Scholar
  8. 8.
    Magnetization Transfer Contrast, R.W. de Boer, Medica Mundi, 402, 64–83, 1992Google Scholar
  9. 9.
    Improved Time of Flight Angiography of the Brain with Magnetization Transfer Contrast, R.E. Edelman, S.S. Ahn, D. Chien, Wei Li, A. Goldman, M. Mantello, J. Kramer, J. Kleefield, Radiology, 184, 395–399, 1992Google Scholar
  10. 10.
    MR enhancement of Brain Lesions, Increased Contrast Dose Compared with Magnetization Transfer, M. Knauth, M. Forsting, M. Hartmann, S. Heiland, T. Bolder, K. Sartor, AJNR, 17, 1853–1859, 1996Google Scholar
  11. 11.
    Magnetization Transfer Contrast in Multiple Sclerosis, R.I. Grossman, Ann. Neurology, 36, Suppl: S97–99, 1994Google Scholar
  12. 12.
    Use of Magnetization Transfer for Improved Contrast on Gradient Echo MR Images of the Cervical Spine, D.A. Finelli, G.C. Hurst, B.A. Karaman, J.E. Simon, J.L. Duerk, E.M. Bellon Radiology, 193, 165–171, 1994Google Scholar
  13. 13.
    Analysis of Water-Macromolecule Proton Magnetization Transfer in Articular Cartilage, D.K. Kim, T.L. Ceckler, V.C. Hascall, A. Calabro, R.S. Balaban, Magn. Res. in Med.,29(2), 211–216, 1993Google Scholar
  14. 14.
    Magnetic Resonance Imaging,D. Stark and W.G. Bradley (editors), Mosby Year Book, St. Louis, 1992, Chapter 14Google Scholar
  15. 15.
    Basic Physics at MR Contrast Agents and Maximization of Image Contrast, R.E. Hendrick, E.M. Haacke J. Magn. Res. Im., 3, pp. 137–148, 1993Google Scholar
  16. 16.
    The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, D.I. Hoult, R.E. Richards J. Magn. Res., 24, p. 71, 1976Google Scholar
  17. 17.
    Resolution and Signal-to-Noise Relationships in NMR Imaging in the Human Body, J.M. Libove, J.R. Singer J. Phys. E: Scientific Instruments, 13, pp. 38–44, 1980Google Scholar
  18. 18.
    Magnetic Resonance Imaging, Effects of Magnetic Field Strength, J. Hoenninger, B. McCasten, J. Watts, L. Kaufmann Radiology, 151, pp. 127–133, 1984Google Scholar
  19. 19.
    Improvement of SNR at low Fieldstrength using Mutually Decoupled Coils for Simultaneous NMR Imaging, C. Leussler and D. Holz SMRM Abstracts, 1991, p. 724Google Scholar
  20. 20.
    Multifrequency Selective RF pulses for Multislice MR Imaging, S. Muller Magn. Res. in Med.,6, pp. 364–371, 1988Google Scholar
  21. Multifrequency Selective RF pulses for Multislice MR Imaging, S. Muller Magn. Res. in Med.,10, pp. 145–155, 1989Google Scholar
  22. 21.
    Ti-Calculations, Combining Ratios and Least Squares, J.J.E. in den Kleef, J.J.M. Cuppen Magn. Res. in Med.,5, pp. 513–524, 1987Google Scholar
  23. 22.
    Protocols and Test Objects for the assessment of MRI Equipment, R.A. Lerski, D.W. McRobbie, J.D. Certaines Magn. Res. Im., 6, pp. 195–199, 1988Google Scholar
  24. 23.
    Age-Related Changes in Proton T1 values of Normal Human Brain, R.G. Steen, S.A. Gronemeyer, J.S. Taylor J. of Magn. Res. Im., 5, pp. 43–48, 1995Google Scholar
  25. 24.
    Use of Fluid Attenuated Inversion Recovery (FLAIR) Pulse Sequences in MRI of the Brain, J.V. Hajnal, D.J. Bryant, L. Kosuboski, I.M. Pattany, B. de Ceane, P.D. Lewis, J.M. Pennock, A. Oatridge, I.R. Young, G.M. Bydder, J. Computer Aided Tomography, 16, pp. 841–844, 1992Google Scholar
  26. 25.
    MR Imaging of the Breast; Fast Imaging Sequences with and without the use of Gd-DPTA, W.A. Kaiser, E. Zeitler Radiology, 170, pp. 681–686, 1989Google Scholar
  27. 26.
    Pharmacokinetic Analysis of Gd-DTPA Enhancement in Dynamic Three-Dimensional MRI of Breast Lesions, J.A. den Boer, R.K.K.M. Maenderop, J. Smink, G. Dornseiffen, P.W.A.A. Koch, J.H. Mulder, C.H. Slump, E.D.P. Volker, R.A.I. de Vos J. of Magn. Res. Im., 7, pp. 702–715, 1997Google Scholar
  28. 27.
    Magnetization Transfer Contrast (MTC) and Tissue Water Proton Relaxation in Vivo, S.D. Wolf, R.S. Balaban Magn. Res. in Med.,10, pp. 135–144, 1989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marinus T. Vlaardingerbroek
    • 1
  • Jacques A. den Boer
    • 2
  1. 1.The Netherlands
  2. 2.The Netherlands

Personalised recommendations