Skip to main content

Peripheral Quantitative Computed Tomography

  • Chapter

Part of the Medical Radiology book series (Med Radiol Diagn Imaging)

Abstract

Peripheral quantitative computed tomography (pQCT) at the forearm was introduced shortly after CT for medical imaging and several years before the development of spinal QCT (Ruegsegger 1974; Genant and Boyd 1977), as a volumetric extension to Cameron’s projectional technique for bone mineral measurements (Cameron and Sorenson 1963). Compared to single photon absorptiometry (SPA), the advantages of pQCT are obvious: separate assessment of trabecular and cortical bone and determination of true volumetric density instead of areal bone mineral density (BMD).

Keywords

  • Bone Mineral Density
  • Trabecular Bone
  • Distal Radius
  • Cortical Thickness
  • Quantitative Compute Tomography

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-05235-8_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-05235-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11: 1356–1363

    PubMed  CAS  CrossRef  Google Scholar 

  • Augat P, Gordon CL, Lang TF, Iida H, Genant HK (1998a) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Bio! 43: 2873–2883

    CAS  CrossRef  Google Scholar 

  • Augat P, Fan B, Lane NE, et al (1998b) Assessment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone 22: 395–402

    PubMed  CAS  CrossRef  Google Scholar 

  • Baran DT, Faulkner KG, Genant HK, Miller PD, Pacifici R (1997) Diagnosis and management of osteoporosis: guidelines for the utilization of bone densitometry. Calcif Tissue Int 61: 433–440

    PubMed  CAS  CrossRef  Google Scholar 

  • Binkley TL, Specker BL (2000) pQCT measurement of bone parameters in young children: validation of technique. J Clin Densitom 3: 9–14

    Google Scholar 

  • Bjarnason NH, Bjarnason K, Haarbo J, Rosenquist C, Christiansen C (1996) Tibolone: prevention of bone loss in late postmenopausal women. J Clin Endocrinol Metab 81: 2419–2422

    PubMed  CAS  CrossRef  Google Scholar 

  • Black DM, Cummings SR, Karpf DB, et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348: 1535–1541

    Google Scholar 

  • Block JE, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4: 249–257

    PubMed  CAS  CrossRef  Google Scholar 

  • Boonen S, Cheng XG, Nijs J, et al (1997) Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 60: 164–170

    PubMed  CAS  CrossRef  Google Scholar 

  • Bouxsein ML, Parker RA, Greenspan SL (1999) Forearm bone mineral density cannot be used to monitor response to alendronate therapy in postmenopausal women. Osteoporos Int 10 (6): 505–509

    PubMed  CAS  CrossRef  Google Scholar 

  • Braun MJ, Meta MD, Schneider P, Reiners C (1998) Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys Med Biol 43: 2279–2294

    PubMed  CAS  CrossRef  Google Scholar 

  • Butz S, Weuster C, Scheidt-Nave C, Geotz M, Ziegler R (1994) Forearm BMD as measured by peripheral quantitative computed tomography pQCT in a German reference population. Osteoporos Int 4: 179–184

    PubMed  CAS  CrossRef  Google Scholar 

  • Cameron JR, Sorenson JA (1963) Measurement of bone min- eral in vivo: an improved method. Science 142: 230–232

    PubMed  CAS  CrossRef  Google Scholar 

  • Capozza R, Ma YF, Ferretti JL, et al (1995) Tomographic (pQCT) and biomechanical effects of hPTH(1–38) on chronically immobilized or overloaded rat femurs. Bone 17[Suppl 41: 233S - 2395

    Google Scholar 

  • Cortet B, Bourel P, Dubois P, Boutry N, Cotten A, Marchandise X (1998) CT scan texture analysis of the distal radius: influence of age and menopausal status. Rev Rhum Engl Ed 65: 109–118

    PubMed  CAS  Google Scholar 

  • Cortet B, Dubois P, Boutry N, Bourel P, Cotten A, Marchandise X (1999) Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 9: 410–419

    PubMed  CAS  CrossRef  Google Scholar 

  • Dambacher MA, Ittner J, Ruegsegger P (1986) Long-term fluoride therapy of postmenopausal osteoporosis. Bone 7: 199–205

    PubMed  CAS  CrossRef  Google Scholar 

  • Duppe H, Gardsell P, Nilsson B, Johnell 0 (1997) A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 60: 171–174

    CAS  Google Scholar 

  • Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338: 736–746

    PubMed  CAS  CrossRef  Google Scholar 

  • Eastell R, Riggs BL, Wahner HW, O’Fallon WM, Amadio PC, Melton LJD (1989) Colles’ fracture and bone density of the ultradistal radius. J Bone Miner Res 4: 607–613

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferretti JL (1995) Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone 17[Suppl 41: 353S - 364S

    Google Scholar 

  • Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219: 1–9

    PubMed  CAS  CrossRef  Google Scholar 

  • Frost HM (1996) Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec 244: 139–147

    PubMed  CAS  CrossRef  Google Scholar 

  • Fujita T, Fujii Y, Goto B (1999) Measurement of forearm bone in children by peripheral computed tomography. Calcif Tissue Int 64: 34–39

    PubMed  CAS  CrossRef  Google Scholar 

  • Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6: 355–360

    PubMed  CAS  CrossRef  Google Scholar 

  • Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12: 545–551

    PubMed  CAS  CrossRef  Google Scholar 

  • Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5: 262–270

    PubMed  CrossRef  Google Scholar 

  • Gordon CL, Webber CE, Adachi JD, Christoforou N (1996) In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images. Phys Med Biol 41: 495–508

    PubMed  CAS  CrossRef  Google Scholar 

  • Gordon CL, Lang T, Augat P, Genant H (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8: 317–325

    PubMed  CAS  CrossRef  Google Scholar 

  • Grampp S, Lang P, Jergas M, et al (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10: 1566–1576

    PubMed  CAS  CrossRef  Google Scholar 

  • Groll 0, Lochmuller EM, Bachmeier M, Willnecker J, Eckstein F (1999) Precision and intersite correlation of bone densitometry at the radius, tibia and femur with peripheral quantitative CT. Skeletal Radiol 28: 696–702

    PubMed  CAS  CrossRef  Google Scholar 

  • Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis• diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192: 845–850

    PubMed  CAS  Google Scholar 

  • Guglielmi G, Cammisa M, De Serio A, et al (1997) Long-term in vitro precision of single slice peripheral quantitative computed tomography (pQCT): multicenter comparison. Technol Health Care 5: 375–381

    PubMed  CAS  Google Scholar 

  • Guglielmi G, De Serio A, Fusilli S, et al (2000) Age-related changes assessed by peripheral QCT in healthy Italian women. Eur Radiol 10: 609–614

    PubMed  CAS  CrossRef  Google Scholar 

  • Hangartner TN (1993) The OsteoQuant: an isotope-based CT scanner for precise measurement of bone density. J Comput Assist Tomogr 17: 798–805

    PubMed  CAS  CrossRef  Google Scholar 

  • Hangartner TN, Overton TR, Harley CH, van den Berg L, Crockford PM (1985) Skeletal challenge: an experimental study of pharmacologically induced changes in bone density in the distal radius, using gamma-ray computed tomography. Calcif Tissue Int 37: 19–24

    PubMed  CAS  CrossRef  Google Scholar 

  • Hangartner TN, Battista JJ, Overton TR (1987) Performance evaluation of density measurements of axial and peripheral bone with x-ray and gamma-ray computed tomography. Phys Med Biol 32: 1393–1406

    PubMed  CAS  CrossRef  Google Scholar 

  • Hasegawa Y, Kushida K, Yamazaki K, Inoue T (1997) Volumetric bone mineral density using peripheral quantitative computed tomography in Japanese women. Osteoporos Int 7: 195–199

    PubMed  CAS  CrossRef  Google Scholar 

  • Hasegawa Y, Schneider P, Reiners C, et al (2000) Estimation of the architectural properties of cortical bone using peripheral quantitative computed tomography. Osteoporos Int 11: 36–42

    PubMed  CAS  CrossRef  Google Scholar 

  • Hernandez ER, Revilla M, Seco-Durban C, Villa LF, Cortes J, Rico H (1997) Heterogeneity of trabecular and cortical postmenopausal bone loss: a longitudinal study with pQCT. Bone 20: 283–287

    PubMed  CAS  CrossRef  Google Scholar 

  • Horikoshi T, Endo N, Uchiyama T, Tanizawa T, Takahashi HE (1999) Peripheral quantitative computed tomography of the femoral neck in 60 Japanese women. Calcif Tissue Int 65: 447–453

    PubMed  CAS  CrossRef  Google Scholar 

  • Hosking D, Chilvers CED, Christiansen C, et al (1998) Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. N Engl J Med 338: 485–492

    PubMed  CAS  CrossRef  Google Scholar 

  • Ito M, Nakamura T, Tsurusaki K, Uetani M, Hayashi K (1999a) Effects of menopause on age-dependent bone loss in the axial and appendicular skeletons in healthy Japanese women. Osteoporos Int 10: 377–383

    PubMed  CAS  CrossRef  Google Scholar 

  • Ito M, Matsumoto T, Enomoto H, Tsurusaki K, Hayashi K (1999b) Effect of nonweight bearing on tibial bone density measured by QCT in patients with hip surgery. J Bone Miner Metab 17: 45–50

    PubMed  CAS  CrossRef  Google Scholar 

  • Jensen GF, Christiansen C, Boesen J, Hegedus V, Transbol I (1982) Epidemiology of postmenopausal spinal and long bone fractures. A unifying approach to postmenopausal osteoporosis. Clin Orthop 166: 75–81

    Google Scholar 

  • Jiang Y, Zhao J, Augat P, et al (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13: 1783–1790

    PubMed  CAS  CrossRef  Google Scholar 

  • Kalender WA, Felsenberg D, Louis O, et al (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9: 70–80

    Google Scholar 

  • Kröger H, Lunt M, Reeve J, et al (1999) Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: the European quantitation of osteoporosis study. Calcif Tissue Int 64: 191–199

    PubMed  CrossRef  Google Scholar 

  • Laib A, Rüegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28µm-resolution microcomputed tomography. Bone 24: 35–39

    PubMed  CAS  CrossRef  Google Scholar 

  • Laib A, Hildebrand T, Hauselmann HJ, Ruegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21: 541–546

    PubMed  CAS  CrossRef  Google Scholar 

  • Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6: 329–337

    PubMed  CAS  Google Scholar 

  • Lalla S, Hothorn LA, Haag N, Bader R, Bauss F (1998) Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats. Osteoporos Int 8: 97–103

    PubMed  CAS  CrossRef  Google Scholar 

  • Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA (1998) Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res 13: 1687–1690

    PubMed  CAS  CrossRef  Google Scholar 

  • Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8: 468–489

    PubMed  CAS  CrossRef  Google Scholar 

  • Louis O, Willnecker J, Soykens S, Van den Winkel P, Osteaux M (1995) Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens. Osteoporos Int 5: 446–449

    PubMed  CAS  CrossRef  Google Scholar 

  • Louis 0, Soykens S, Willnecker J, Van den Winkel P, Osteaux M (1996) Cortical and total bone mineral content of the radius: accuracy of peripheral computed tomography. Bone 18: 467–472

    PubMed  CAS  CrossRef  Google Scholar 

  • Majumdar S, Link TM, Augat P, et al (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10: 231–239

    Google Scholar 

  • Medici TC, Ruegsegger P (1990) Does alternate-day cloprednol therapy prevent bone loss? A longitudinal double-blind, controlled clinical study. Clin Pharmacol Ther 48: 455–466

    PubMed  CAS  CrossRef  Google Scholar 

  • Melton LJd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8: 1227–1233

    PubMed  CrossRef  Google Scholar 

  • Miller ME, Hangartner TN (1999) Bone density measurements by computed tomography in osteogenesis imperfecta type I. Osteoporos Int 9: 427–432

    PubMed  CAS  CrossRef  Google Scholar 

  • Muller A, Rüegsegger E, Rüegsegger P (1989) Peripheral QCT: a low-risk procedure to identify women predisposed to osteoporosis. Phys Med Biol 34: 741–749

    PubMed  CAS  CrossRef  Google Scholar 

  • Müller R, Hildebrand T, Rüegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39: 145–164

    PubMed  CrossRef  Google Scholar 

  • Müller R, Hildebrand T, Häuselmann HJ, Rüegsegger P (1996) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11: 1745–1750

    PubMed  CrossRef  Google Scholar 

  • Munch B, Rüegsegger P (1993) 3-D repositioning and differential images of volumetric CT measurements IEEE Trans Med Imag 12:509–514

    Google Scholar 

  • Neu CM, Manz F, Rauch F, Merkel A, Schoenau E (2001) Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28: 227–223

    PubMed  CAS  CrossRef  Google Scholar 

  • Nielsen NM, von der Recke P, Hansen MA, Overgaard K, Christiansen C (1994) Estimation of the effect of salmon calcitonin in established osteoporosis by biochemical bone markers. Calcif Tissue Int 55: 8–11

    PubMed  CAS  CrossRef  Google Scholar 

  • Nijs J, Westhovens R, Joly J, Cheng XG, Borghs H, Dequeker J (1998) Diagnostic sensitivity of peripheral quantitative computed tomography measurements at ultradistal and proximal radius in postmenopausal women. Bone 22: 659–664

    PubMed  CAS  CrossRef  Google Scholar 

  • Nordin BE, Chatterton BE, Walker CJ, Wishart J (1987) The relation of forearm mineral density to peripheral fractures in postmenopausal women. Med J Aust 146: 300–304

    PubMed  CAS  Google Scholar 

  • Patel R, Blake GM, Rymer J, Fogelman I (2000) Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporos Int 11: 68–75

    PubMed  CAS  CrossRef  Google Scholar 

  • Pearson J, Ruegsegger P, Dequeker J et al (1994) European semi-anthropomorphic phantom for the cross-calibration of peripheral bone densitometers: assessment of precision accuracy and stability. Bone Miner 27: 109–120

    PubMed  CAS  CrossRef  Google Scholar 

  • Pludowski P, Bienkowska R, Talajko A, Lorenc RS (1998) Indices of mechanical strength of the distal radius in healthy women and women with Colles fracture. Pol Merkuriusz Lek 5 (28): 208–210

    CAS  Google Scholar 

  • Prevrhal S, Engelke K, Kalender W (1999) Accuracy limits for the determination of cortical width and density: the influence on object size and CT imaging parameters. Phys Med Biol 44: 751–764

    PubMed  CAS  CrossRef  Google Scholar 

  • Qin L, Au SK, Chan KM, et al (2000) Peripheral volumetric bone mineral density in pre-and postmenopausal Chinese women in Hong Kong. Calcif Tissue Int 67: 29–36

    PubMed  CAS  CrossRef  Google Scholar 

  • Ravn P, Clemmesen B, Rids BJ, Christiansen C (1996) The effect on bone mass and bone markers of different doses of ibandronate, a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: a 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone 19: 527–533

    PubMed  CAS  CrossRef  Google Scholar 

  • Reeve J, Kroger H, Nijs J, et al (1996) Radial cortical and trabecular bone densities of men and women standardized with the European Forearm Phantom. Calcif Tissue Int 58: 135–143

    PubMed  CAS  Google Scholar 

  • Rittweger J, Beller G, Ehrig J, et al (2000) Bone-muscle strength

    Google Scholar 

  • indices for the human lower leg. Bone 27:319–326 Rüegsegger P (1974) An extension of classical bone mineral

    Google Scholar 

  • measurements. Ann Biomed Eng 2: 1028–1046

    Google Scholar 

  • Ruegsegger P, Kalender WA (1993) A phantom for standardization and quality control in peripheral bone measurements by pQCT and DXA. Phys Med Biol 38: 1963–1970

    CrossRef  Google Scholar 

  • Rupich RC, Specker BL, Lieuw AFM, Ho M (1996) Gender and race differences in bone mass during infancy. Calcif Tissue Int 58: 395–397

    PubMed  CAS  Google Scholar 

  • Sato M, Kim J, Short LL, Slemenda CW, Bryant HU (1995) Longitudinal and cross-sectional analysis of raloxifene effects on tibiae from ovariectomized aged rats. J Pharmacol Exp Ther 272: 1252–1259

    PubMed  CAS  Google Scholar 

  • Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J (1995) Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). Paediatric osteology. Proceedings of First International Workshop on Pediatric Osteology, 1995, Cologne, Germany, pp 141–146

    Google Scholar 

  • Schlenker RA, VonSeggen WW (1976) The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res 20: 41–52

    PubMed  CAS  CrossRef  Google Scholar 

  • Schneider P, Butz S, Allolio B, et al (1995) Multicenter German reference data base for peripheral quantitative computer tomography. Technol Health Care 3: 69–73

    PubMed  CAS  Google Scholar 

  • Schneider PF, Fischer M, Allolio B, et al (1999) Alendronate increases bone density and bone strength at the distal radius in postmenopausal women. J Bone Miner Res 14: 1387–1393

    PubMed  CAS  CrossRef  Google Scholar 

  • Schnitzler CM, Biddulph SL, Mesquita JM, Gear KA (1996) Bone structure and turnover in the distal radius and iliac crest: a histomorphometric study. J Bone Miner Res 11: 1761–1768

    PubMed  CAS  CrossRef  Google Scholar 

  • Schonau E (1998a) Problems of bone analysis in childhood and adolescence. Pediatr Nephrol 12: 420–429

    PubMed  CAS  CrossRef  Google Scholar 

  • Schonau E (1998b) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49: 27–31

    PubMed  CAS  CrossRef  Google Scholar 

  • Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F (2000) Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab 85: 1095–1098

    PubMed  CAS  CrossRef  Google Scholar 

  • Shepherd JA, Lu Y, Cheng X, et al (2000a) Universal standardization of forearm bone densitometry: densitometry relationships. J Bone Miner (in press)

    Google Scholar 

  • Shepherd JA, Lu Y, Cheng X, et al (2000b) Universal standardization of forearm bone densitometry. II. Osteoporosis diagnostic implications. Manuscript under internal review. J Bone Miner (in press)

    Google Scholar 

  • Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13: 871–882

    PubMed  CrossRef  Google Scholar 

  • Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res 12: 211–218

    PubMed  CAS  CrossRef  Google Scholar 

  • Srivastava AK, Bhattacharyya S, Castillo G, Wergedal J, Mohan S, Baylink DJ (2000) Development and application of a serum C-telopeptide and osteocalcin assay to measure bone turnover in an ovariectomized rat model. Calcif Tissue Int 66: 435–442

    PubMed  CAS  CrossRef  Google Scholar 

  • Steiger P, Block JE, Steiger S, et al (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology 175: 537–543

    PubMed  CAS  Google Scholar 

  • Takada M, Engelke K, Hagiwara S, Grampp S, Genant HK (1996) Accuracy and precision study in vitro for peripheral quantitative computed tomography. Osteoporos Int 6: 207–212

    PubMed  CAS  CrossRef  Google Scholar 

  • Tucci JR, Tonino RP, Emkey RD, Peverly CA, Kher U, Santora AC Jr (1996) Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 101: 488–501

    PubMed  CAS  CrossRef  Google Scholar 

  • Ulrich D, Rietbergen BV, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25: 55–60

    PubMed  CAS  CrossRef  Google Scholar 

  • Wachter NJ, Augat P, Mentzel M, et al (2001) Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28: 133–139

    PubMed  CAS  CrossRef  Google Scholar 

  • Wapniarz M, Lehmann R, Reincke M, Schonau E, Klein K, Allolio B (1997) Determinants of radial bone density as measured by PQCT in pre-and postmenopausal women: the role of bone size. J Bone Miner Res 12: 248–254

    PubMed  CAS  CrossRef  Google Scholar 

  • Webb S (1998) The mathematics of image formation and image processing. In: Webb S (ed) The physics of medical imaging. Institute of Physics Publishing, London, pp 534–566

    Google Scholar 

  • Wu C, Hans D, He Y, et al (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26: 529–533

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prevrhal, S., Engelke, K., Genant, H.K. (2003). Peripheral Quantitative Computed Tomography. In: Grampp, S. (eds) Radiology of Osteoporosis. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05235-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05235-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05237-2

  • Online ISBN: 978-3-662-05235-8

  • eBook Packages: Springer Book Archive