Skip to main content

Thin Film Water on Insulator Surfaces

  • Chapter
Water in Confining Geometries

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

Abstract

The study of thin water films on insulator surfaces started, as did many of the pioneering investigations in surface science, with Irving Langmuir [1]. In 1918 he measured film thicknesses on mica and glass. His procedure, elegant in its simplicity, involved taking many sheets of mica or cover glass slides from the ambient laboratory environment and stacking them in a small cell. The adsorbed molecules (principally H2O) on these surfaces were driven off by heating to 300EC and captured in a trap cooled with liquid air. The number of water molecules caught, together with the known geometric area of the substrate surfaces, allowed a calculation of thin water film coverages: 2 molecular layers on mica and 4.5 on glass. If we view these insulator substrates as typical, then we come to expect any insulator surface to have a few molecular layers of water stuck to it under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Langmuir: J. Am. Chem. Soc. 40, 1361 (1918).

    Article  Google Scholar 

  2. A. J. Stone: The Theory of Intramolecular Forces, (Clarendon Press, Oxford, 1997).

    Google Scholar 

  3. P. Atkins: Physical Chemistry, 6th ed; (W. H. Freeman, New York, 1998).

    Google Scholar 

  4. J. N. Israelachvili: Intermolecular and Surface Forces, (Academic Press, London, 1985).

    Google Scholar 

  5. J. F. Lennard-Jones, B. M. Dent: Trans. Faraday Soc. 24, 92 (1928).

    Article  Google Scholar 

  6. National Research Council (US) International Critical tables (McGraw-Hill, New York, 1926).

    Google Scholar 

  7. O. Engkvist, A. J. Stone: J. Chem. Phys. 110, 12089 (1999).

    Article  ADS  Google Scholar 

  8. D. Eisenberg, W. Kauzmann: The Structure and Properties of Water, (Oxford, New York, 1969).

    Google Scholar 

  9. D. Henderson, F. A. Abraham, J Barker: Mol. Phys. 31, 1291 (1976).

    Article  ADS  Google Scholar 

  10. C. Y. Lee, J. A. McCammon, P. J. Rossky: J. Chem.Phys. 80, 4448 (1984).

    Article  ADS  Google Scholar 

  11. O. Engkvist, A. J. Stone: J. Chem. Phys. 112, 6827 (2000).

    Article  ADS  Google Scholar 

  12. G. C. Pimentel, A. L. McClelland: The Hydrogen Bond, (Reinhold, New York, 1960).

    Google Scholar 

  13. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Part 1: NSRDSNB86, (U. S. Government Printing Office, Washington, D. C., 1972).

    Google Scholar 

  14. H. D. Downing, D. Williams: J. Geophys. Res. 80, 1656 (1975).

    Article  ADS  Google Scholar 

  15. S. G. Warren: Appl. Opt. 23, 1306 (1984).

    Article  Google Scholar 

  16. E. Estrin, L. Paglieri, G. Corongiu, E. Clementi: J. Phys. Chem. 100, 8701 (1996).

    Article  Google Scholar 

  17. S. A. Rice, M. S. Bergren, A. C. Belch, G. Nielson: J. Phys. Chem. 87, 4295 (1983).

    Article  Google Scholar 

  18. H. Witek, V. Buch: J. Chem. Phys. 110, 3168 (1999).

    Article  ADS  Google Scholar 

  19. K. Nauta, R. E. Miller: Science 287, 293 (2000).

    Article  ADS  Google Scholar 

  20. M. Foster, G. Ewing: J. Chem. Phys. 112, 6817 (2000).

    Article  ADS  Google Scholar 

  21. S. Brunauer, L. S. Deming, W. E. Deming, E. Teller: J. Am. Chem. Soc. 62, 1723 (1940).

    Article  Google Scholar 

  22. C. Noda, G. E. Ewing: Surf. Sci. 240, 181 (1990).

    Article  ADS  Google Scholar 

  23. A. W. Meredith, A. J. Stone: J. Chem. Phys. 104, 3058 (1996).

    Article  ADS  Google Scholar 

  24. H.-C. Chang, H. H. Richardson, G. E. Ewing: J. Chem. Phys. 89, 7561 (1988).

    Article  ADS  Google Scholar 

  25. G. E. Ewing, G. C. Pimentel: J. Chem. Phys. 35, 925 (1961).

    Article  ADS  Google Scholar 

  26. J. Heidberg, E. Kampshoff, M. Suhren: J. Chem. Phys. 95, 9408 (1991).

    Article  ADS  Google Scholar 

  27. D. Schmicker, J. P. Toennies, R. Vollmer, H. Weiss: J. Chem. Phys. 95, 9412 (1991).

    Article  ADS  Google Scholar 

  28. T. L. Hill: Introduction to Statistical Thermodynamics, (Addison-Wesley, Reading, 1960).

    Google Scholar 

  29. K. R. Willian, G. E. Ewing: J. Phys. Chem. 99, 2186 (1995),

    Article  Google Scholar 

  30. S. K. Dunn, G. E. Ewing: J. Phys. Chem. 96, 5284 (1992).

    Article  Google Scholar 

  31. O. Berg, G. E. Ewing: Surf. Sci. 220, 207 (1989).

    Article  ADS  Google Scholar 

  32. J. Heidberg, E. Kampshoof, R. Kühnemuth, O. Schömekäs: Can. J. Chem 72, 795 (1994).

    Article  Google Scholar 

  33. L. W. Bruch, A. Glebov, J. P. Toennies, H. Weiss: J. Chem. Phys. 103, 5109 (1995);

    Article  ADS  Google Scholar 

  34. S. Fölsch, M. Henzler: Surf. Sci. 264, 65 (1992).

    Article  Google Scholar 

  35. S. Brunauer, P. H. Emmett, E. Teller: J. Am. Chem. Soc. 60, 309 (1938).

    Article  ADS  Google Scholar 

  36. G. Meyer, N. M. Amer: Appl. Phys. Lett. 56, 2100 (1990),

    Article  ADS  Google Scholar 

  37. A. L. Schuger, R. M. Wilson, R. T. Williams: Phys. Rev. B 49, 4915 (1994),

    Article  ADS  Google Scholar 

  38. Q. Dai, J. Hu, M. Salmeron: J. Phys. Chem. B 101, 1994 (1997).

    Article  Google Scholar 

  39. J. Hu, X.-D Xiao, D. Ogletree, M. Salmeron: Science 268, 267 (1995).

    Article  ADS  Google Scholar 

  40. K. Miura, T. Yamada, M. Ishikawa, S. Okita: Appl. Surf. Sci. 140, 415 (1999).

    Article  ADS  Google Scholar 

  41. M. Luna, F. Rieutford, N. A. Melman, Q. Dai, M. Salmeron: J. Phys. Chem. A 102, 6793 (1998).

    Article  Google Scholar 

  42. G. Bryant, J. Hallett, B. Mason: J. Phys. Chem. Solids 12, 189 (1959).

    Article  Google Scholar 

  43. A. Lehmann, G. Fahsold, G. Konig, K. H. Riedere: Surf. Sci. 369, 289 (1996).

    Article  ADS  Google Scholar 

  44. V. Sadtchenko, P. Conrad, G. E. Ewing: J. Chem. Phys. 116, 4293 (2002).

    Article  ADS  Google Scholar 

  45. W. Cantrell, G. E. Ewing: J. Phys. Chem. B 105, 5435 (2001).

    Article  Google Scholar 

  46. S. J. Peters, G. E. Ewing: Langmuir 13, 6345 (1997).

    Article  Google Scholar 

  47. S. J. Peters, G. E. Ewing, J. Phys. Chem. B 101, 10880 (1997).

    Article  Google Scholar 

  48. W. Cantrell, C. McCrory, G. E. Ewing: J. Chem. Phys. 116, 2116 (2002).

    Article  ADS  Google Scholar 

  49. I. N. Tang, K. H. Fung, D. G. Imre, H. R. Munkelwitz, Aerosol Sci. Technol. 23, 443 (1995).

    Article  Google Scholar 

  50. P. B. Barraclough, P. G. Hall: Surf. Sci. 46, 393 (1974),

    Article  ADS  Google Scholar 

  51. H. U. Walter, Z. Phys. Chem. (Frankfurt am Main) 75, 287 (1971),

    Article  Google Scholar 

  52. R. A. Lad, Surf. Sci. 12, 37 (1968),

    Article  ADS  Google Scholar 

  53. M. Kaiho, M. Chikazawa, T. Kanazawa: Nippon Kagaku Kaishi 8, 1368 (1972).

    Google Scholar 

  54. G. E. Ewing, S. J. Peters: Surf. Rev. and Lettr. 4, 757 (1997).

    Article  ADS  Google Scholar 

  55. D. Dai, S. J. Peters, G. E. Ewing: J. Phys. Chem. 99, 10299 (1995).

    Article  Google Scholar 

  56. W. Vedder, R. S. McDonald: J. Chem. Phys. 38, 1583 (1963).

    Article  ADS  Google Scholar 

  57. G. Carson, S. Granick: Appl Spectrosc. 43, 473 (1989).

    Article  ADS  Google Scholar 

  58. F. H. Norton: Elements of Ceramics, (Addison-Wesley: Cambridge, 1952).

    Google Scholar 

  59. M. Odelius, M. Bernasconi, M. Parrinello: Phys. Rev. Lett. 78, 2855 (1997).

    Article  ADS  Google Scholar 

  60. P. Miranda, L. Xu, Y. Shen, M. Salmeron: Phys. Rev. Lett. 81, 5876 (1998).

    Article  ADS  Google Scholar 

  61. J. Dash: Phys. Rev. B 15, 3136 (1977).

    Article  ADS  Google Scholar 

  62. D. Beaglehole, H. K. Christenson: J. Phys. Chem. 96, 3395 (1992),

    Article  Google Scholar 

  63. D. Beaglehole, E. Radlinska, B. Ninham, H. K. Christenson: Phys. Rev. Lett. 66, 2084 (1991).

    Article  ADS  Google Scholar 

  64. D. Beaglehole: Physica, A. 244, 40 (1997).

    Article  ADS  Google Scholar 

  65. B. Wassermann, J. Reif, E. Matthias: Phys. Rev. B 50, 2593 (1994).

    Article  ADS  Google Scholar 

  66. J. P. Devlin, V. Buch: J. Phys. Chem. 99, 16534 (1995).

    Article  Google Scholar 

  67. J. P. Devlin, V. Buch: J. Phys. Chem. 101, 6095 (1997).

    Article  Google Scholar 

  68. B. Rowland, M. Fisher, J. P. Devlin: J. Phys. Chem. 97, 2485 (1993).

    Article  Google Scholar 

  69. J. G. Davy, G. A. Somorjai: J. Chem. Phys. 55, 3624 (1991).

    Article  ADS  Google Scholar 

  70. J. C. Hemminger: Int. Rev. Phys. Chem. 18, 387 (1999).

    Article  Google Scholar 

  71. V. H. Grassian: Int. Rev. Phys. Chem. 20, 467 (2001).

    Article  Google Scholar 

  72. R. Vogt, B. F. Finlayson-Pitts: J. Phys. Chem. 98, 3747 (1994).

    Article  Google Scholar 

  73. G. I. Tardos, I. V. Nicolaescu, B. Ahtchi-Ali: Powder Handl. and Process. 8, 7 (1996).

    Google Scholar 

  74. P. V. Hobbs, Ice Physics, (Clarendon Press, Oxford, 1974).

    Google Scholar 

  75. H. R. Pruppacher, J. D. Klett: Microphysics of Clouds and Precipitation, 2nd ed. (D. Reidd, Dordrecht, 1997).

    Google Scholar 

  76. V. Sadtchenko, G. E. Ewing, D. Nutt, A. J. Stone: Langmuir (to be published, 2002).

    Google Scholar 

  77. M. Faraday: Proc. Roy. Soc. [London] 10, 152 (1860).

    Google Scholar 

  78. V. Sadtchenko, G. E. Ewing: J. Chem. Phys. in press (2002).

    Google Scholar 

  79. V. F. Petrenko, R. W. Whitworth: Physics of Ice, (Oxford University Press, Oxford, 1999).

    Google Scholar 

  80. M. Baker, J. G. Dash: J. Cryst. Growth 97, 770 (1989).

    Article  ADS  Google Scholar 

  81. S. M. Clegg, J. P. D. Abbatt: J. Phys. Chem. A 105, 6630 (2001).

    Article  Google Scholar 

  82. T. Huthwelker, D. Lamb, M. Baker, B. Swanson, T. Peter: J. Colloid and Interface Sci. 238, 147 (2001).

    Article  Google Scholar 

  83. D. R. Hanson and A. R. Ravishankara: J. Phys. Chem. 96, 2682 (1992).

    Article  Google Scholar 

  84. M. Zondlo, S. B. Barone, M. A. Tolbert: Geophys. Res. Lett. 24, 1391 (1997).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ewing, G.E., Foster, M., Cantrell, W., Sadtchenko, V. (2003). Thin Film Water on Insulator Surfaces. In: Buch, V., Devlin, J.P. (eds) Water in Confining Geometries. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05231-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05231-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05581-2

  • Online ISBN: 978-3-662-05231-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics