Skip to main content

Water Confined at the Liquid-Air Interface

  • Chapter

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

Summary

The liquid interface of aqueous solutions is of central importance to numerous phenomena from cloud processing of combustion generated oxides to corrosion degradation of structural materials to transport across cell membranes. Recently, the nonlinear spectroscopic method, sum frequency generation (SFG), has been applied to investigate the structure of liquid interfaces and alteration of that structure by materials in solution. This chapter focuses on two categories of materials in solution: inorganic ionic materials that are nonvolatile — H2SO4, HNO3, alkali sulfates and bisulfates, NaCl, and NaNO3 — and soluble molecules that are volatile — HCl and NH3. Ionic materials influence the structure of water at the interface through an electric double layer that arises from the differential distribution of anions and cations near the interface. Two models for the effect of the double layer are discussed. Soluble molecular materials of lower surface tension partition to the interface and displace surface water molecules. Ammonia is a rather unique probe of water at the surface. At low concentrations, ammonia merely docks to the dangling-OH groups. At intermediate concentrations, the surface changes little as the bulk concentration increases and at higher concentrations, ammonia blankets the surface and displaces water at the surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Wilson, A. Pohorille: J. Chem. Phys. 95, 6005–6013 (1991).

    Article  ADS  Google Scholar 

  2. D. Michael, I. Benjamin: J. Chem. Phys. 107, 5684–5693 (1997).

    Article  ADS  Google Scholar 

  3. I. Benjamin : Acc. Chem. Res. 28, 233 (1995).

    Article  Google Scholar 

  4. D. J. Tobias, P. Jungwirth, M. Parrinello: J. Chem. Phys. 114, 7036–7044 (2001).

    Article  ADS  Google Scholar 

  5. P. Jungwirth, D. J. Tobias: J. Phys. Chem. B, 10468–10472 (2001).

    Google Scholar 

  6. P. Jungwirth, D. J. Tobias: J. Phys. Chem. B 104, 7702–7706 (2000).

    Article  Google Scholar 

  7. P. Jungwirth: J. Phys. Chem. A 104, 145–148 (2000).

    Article  Google Scholar 

  8. X. D. Zhu, H. Suhr, Y. R. Shen: Phys. Rev. B 35, 3047 (1987).

    Article  ADS  Google Scholar 

  9. J. H. Hunt, P. Guyot-Sionnest, Y. R. Shen: Chem. Phys. Lett. 133, 189–192 (1987).

    Article  ADS  Google Scholar 

  10. Y. R. Shen: Nature. 337, 519 (1989).

    Article  ADS  Google Scholar 

  11. Q. Du, R. Superfine, E. Freysz, Y. R. Shen: Phys. Rev. Lett. 70, 2313–2316 (1993).

    Article  ADS  Google Scholar 

  12. C. Radüge, V. Pflumio, Y. R. Shen,: Chem. Phys. Lett. 274, 140–144 (1997).

    Article  ADS  Google Scholar 

  13. S. Baldelli, C. Schnitzer, M. J. Shultz, D. Campbell: J. Phys. Chem. B 101, 10435–10441 (1997).

    Article  Google Scholar 

  14. S. Baldelli, C. Schnitzer, M. J. Shultz, D. Campbell: J. Chem. Phys. Lett. 287, 143–147 (1998).

    Article  ADS  Google Scholar 

  15. S. Baldelli, C. Schnitzer, M. J. Shultz: Chem. Phys. Lett. 302, 157–163 (1999).

    Article  ADS  Google Scholar 

  16. S. Baldelli, D. Campbell, C. Schnitzer, M. J. Shultz: J. Phys. Chem. B. 103, 2789–2795 (1999).

    Article  Google Scholar 

  17. C. Schnitzer, S. Baldelli, D. J. Campbell, M. J. Shultz: J. Phys. Chem. A. 103, 6383–6386 (1999).

    Article  Google Scholar 

  18. C. Schnitzer, S. Baldelli, M. J. Shultz: Chem. Phys. Lett. 313, 416–420 (2000).

    Article  Google Scholar 

  19. C. Schnitzer, S. Baldelli, M. J. Shultz: J. Phys. Chem. B 104, 585–590 (2000).

    Article  Google Scholar 

  20. M. J. Shultz, C. Schnitzer, D. Simonelli, S. Baldelli: Int. Rev. Phys. Chem. 19, 123–153 (2000).

    Article  Google Scholar 

  21. M. J. Shultz, S. Baldelli, C. Schnitzer, D. Simonelli: J. Phys. Chem. B 106 (2002).

    Google Scholar 

  22. J. C. Conboy, M. C. Messmer, G. L. Richmond: J. Phys. Chem. 100, 7617 (1995).

    Article  Google Scholar 

  23. D. E. Gragson, G. L. Richmond: J. Chem. Phys. 107. 9687–9690 (1997).

    Article  ADS  Google Scholar 

  24. D. E. Gragson, G. L. Richmond: J. Phys. Chem. B 102, 569–576 (1998).

    Article  Google Scholar 

  25. M. C. Messmer, J. C. Conboy, G. L. Richmond: J. Am. Chem. Soc. 117, 8039 (1995).

    Article  Google Scholar 

  26. B. Dick, A. Gierulski, G. Marowsky, G. A. Reider: Appl. Phys. B 38, 107–116 (1985).

    Article  ADS  Google Scholar 

  27. B. Dick: Chem. Phys. 96, 199–215 (1985).

    Article  ADS  Google Scholar 

  28. C. Hirose, N. Akamatsu, K. Domen: Appl. Spec. 46, 1051–1072 (1992).

    Article  ADS  Google Scholar 

  29. C. Hirose, N. Akamatsu, K. Domen: J. Chem. Phys. 96, 997–1004 (1992).

    Article  ADS  Google Scholar 

  30. R. E. Muenchausen, R. A. Keller, N. S. Nogar: J. Opt. Soc. Am. 4, 237–241 (1987).

    Article  ADS  Google Scholar 

  31. N. Akamatsu, K. Domen, C. Hirose: Appl. Spec. 46, 1051–102 (1992).

    Article  ADS  Google Scholar 

  32. N. Bloembergen, P. S. Pershan: Phys. Rev. 128, 606–622 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. H. Chen, D. E. Irish: J. Phys. Chem. 75, 2672–2681 (1971).

    Article  Google Scholar 

  34. D. E. Irish, H. Chen: J. Phys. Chem. 74, 3796–3802 (1970).

    Article  Google Scholar 

  35. D. E. Irish, M. H. Brooker: Raman and Infrared Spectral Studies of Electrolytes, Clark, R. J. H. and Hester, R. E., Ed.; Heyden & Son: London, 1981, pp 212311.

    Google Scholar 

  36. C. I. Ratcliffe, D. E. Irish: J. Phys. Chem. 86, 4897–4905 (1982).

    Article  Google Scholar 

  37. C. I. Ratcliffe, D. E. Irish Can: J. Chem. 63, 3521–3525 (1985).

    Google Scholar 

  38. J. R. Scherer: The Vibrational Spectroscopy of Water, Clark, R. J. H. and Hester, R. E., Ed.; Heyden: Philadelphia, 5, 149–216 (1978).

    Google Scholar 

  39. J. R. Scherer, M. K. Go, S. Kint: J. Phys. Chem. 78, 1304–1313 (1974).

    Article  Google Scholar 

  40. V. Buch, J. P. Devlin: J. Chem. Phys. 110, 3437–3443 (1999).

    Article  ADS  Google Scholar 

  41. J. P. Devlin, V. Buch: J. Phys. Chem. 99, 16534–16548 (1995).

    Article  Google Scholar 

  42. J. P. Devlin, V. Buch: J. Phys. Chem. B. 101, 6095–6098 (1997).

    Article  Google Scholar 

  43. J. P. Devlin, C. Joyce, V. Buch: J. Phys. Chem. A 104, 1974–1977 (2000).

    Article  Google Scholar 

  44. B. Rowland, N. S. Kadagathur, J. P. Devlin, V. Buch, T. Feldman, M. J. Wojcik: J. Chem. Phys. 102, 8328–8341 (1995).

    Article  ADS  Google Scholar 

  45. C. J. Tsai, K. D. Jordan: J. Phys. Chem. 97, 5208–5210 (1993).

    Article  Google Scholar 

  46. S. Baldelli, C. Schnitzer, M. J. Shultz, D. J. Campbell: Sum Frequency Generation Study of Water at H2S04 and Cs 2 SO 4 Solutions : Las Vegas, NV, 1997.

    Google Scholar 

  47. S. Baldelli, C. S. Schnitzer, M. J. Shultz, D. J. Campbell: Probing H 2 O Molecules At the Interface of H 2 SO4/H2 O Solutions Using Sum Frequency Generation: Las Vegas, NV, 1997.

    Google Scholar 

  48. L. F. Phillips: Aust. J. Chem. 47, 91–100 (1994).

    Article  Google Scholar 

  49. D. H. Fairbrother, H. Johnston, G. Somorjai: J. Phys. Chem. 100, 13696–13700 (1996).

    Article  Google Scholar 

  50. S. Baldelli, C. Schnitzer, M. J. Shultz: J. Chem. Phys. 108, 9817–9820 (1998).

    Article  ADS  Google Scholar 

  51. O. K. Rice: J. Phys. Chem. 32, 583–592 (1928).

    Article  Google Scholar 

  52. N. G. McDeffie: Langmuir. 17, 5711–5713 (2001).

    Article  Google Scholar 

  53. G. Nathanson, P. Davidovits, D. Worsnop, C. Kolb: J. Phys. Chem. 100, 13007 (1996).

    Article  Google Scholar 

  54. Q. Shi, P. Davidovits, J. T. Jayne, D. R. Worsnop, C. E. Kolb: J. Phys. Chem. A 103, 8812–8823 (1999).

    Article  Google Scholar 

  55. E. Swartz, Q. Shi, P. Davidovits, J. T. Jayne, D. R. Worsnop, C.E. Kolb: J. Phys. Chem. A 103, 8824–5533 (1999)

    Article  Google Scholar 

  56. B. J. Finlayson-Pitts, J. N. Pitts Jr: Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, (1999).

    Google Scholar 

  57. C. E. Kolb, D. R. Worsnop, M. S. Zahniser, P. Davidovits, L. F. Keyser, M. T. Leu, M. J. Molina, D. R. Hanson, A. R. Ravishankara: Laboratory Studies of Atmospheric Heterogeneous Chemistry; Barker, J., Ed.; World Scientific: Singapore, 771–875 (1995).

    Google Scholar 

  58. T. S. Bates, B. J. Huebert, J. L. Gras, F. B. Griffiths, P. A. J. Durkee: Geophys. Res. 103, 16 (1998).

    Google Scholar 

  59. D. Simonelli, S. Baldelli, M. Shultz: J.Chem. Phys. Lett. 28, 400–404 (1998).

    Article  Google Scholar 

  60. D. J. Donaldson: J. Phys. Chem. A 103, 62–70 (1999).

    Article  Google Scholar 

  61. C. D. Bain, P. B. Davies, T. H. Ong, R. N. Ward: Langmuir. 7, 1563 (1991).

    Article  Google Scholar 

  62. D. Simonelli, M. J. Shultz: J. Chem. Phys. 112, 6804–6816 (2000).

    Article  ADS  Google Scholar 

  63. D. D. Nelson Jr, G. T. Fraser, W. Klemperper: Science. 238, 1670–1674 (1987).

    Article  ADS  Google Scholar 

  64. O. S. Binbrek, A. Anderson: Chem. Phys. Lett. 15, 421 (1972).

    Article  ADS  Google Scholar 

  65. J. J. Lagowski: The Chemistry of Non-Aqueous Solvents, II Acidic and Basic Solvents; Academic Press: New York, 1967; Vol. II.

    Google Scholar 

  66. W. B. Fischer, H. H. Eysel,: J. Mol. Struct. 415, 249 (1997).

    Article  ADS  Google Scholar 

  67. C. A. Plint, R. M. B. Small, H. L. Welsh: Can. J. Chem. 32, 653 (1954).

    Google Scholar 

  68. L. B. Magnusson: J. Phys. Chem. 74, 4221–4228 (1970).

    Article  Google Scholar 

  69. M. Falk, E. Whalley: J. Chem. Phys. 34, 1554 (1961).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shultz, M.J., Baldelli, S., Schnitzer, C., Simonelli, D. (2003). Water Confined at the Liquid-Air Interface. In: Buch, V., Devlin, J.P. (eds) Water in Confining Geometries. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05231-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05231-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05581-2

  • Online ISBN: 978-3-662-05231-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics