Skip to main content

Electrostriction of Supported Lipid Membranes and Their Application in Biosensing

  • Chapter
Ultrathin Electrochemical Chemo- and Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 2))

  • 470 Accesses

Abstract

This review reports the significance of bilayer lipid membranes on a solid support (sBLM) for the construction of biosensors. The methods of formation of lipid membranes on different solid supports, including different metals (silver, gold, stainless steel, mercury), agar, and conducting polymers, are presented. Several examples of the application of electrostriction and dielectric relaxation methods for the study of the mechanical properties and dynamics of solid-supported bilayers are shown. We demonstrate that these methods are useful for studying the physical properties of chemically modified supported membranes, the interaction of surfactants and nucleic acids with lipid membranes, the binding of enzymes and antibodies to sBLM, and hybridization of nucleic acids on the membrane surface. A comparison of the mechanical properties of sBLM of various compositions and method of formation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ab:

Antibody

Ag:

Antigen

ACH:

Acetylcholinesterase

A-GOX:

Avidin-modified glucose oxidase

A-IgG:

Avidin-modified immunoglobulin G

B-BLM:

Bilayer lipid membrane composed of biotinylated phospholipids

BLM:

Bilayer lipid membranes

(dT)15:

5’-Deoxypentadecylthymidylate

(dA)15:

5’-Deoxypentadecyladenylate

C:

Capacitance

Cs :

Specific capacitance

CH(dT)15:

5’-Cholesterolphosphoryl deoxypentadecyldeoxythymidic acid

C16(dT)15:

5’-Palmitylphosphoryl deoxypentadecyldeoxythymidic acid

cmc:

Critical micellar concentration

COB:

Crude ox brain fraction

CTAB:

Cetyltrimethylammonium bromide

d:

Thickness

DDA:

Dodecylamine

DNA:

Deoxyribonucleic acid

DPPC:

Dipalmitoylphosphatidylcholine

DTAB:

Dodecyltrimethylammonium bromide

e0 :

Elementary charge

E⊥ :

Elasticity modulus

f:

Frequency

fr :

Reduction factor

gs :

Specific conductivity

GMO:

Glycerol monooleate

GOX:

Glucose oxidase

HDA:

Hedadecylamine

HDM:

Hexadecylmercaptan

I:

Current

K:

Volume compressibility modulus

Kb :

Binding constant

m:

Hill coefficient

N:

Number of binding sites

P:

Pressure

Qd :

Total charge transferred due to dipole reorientation

Qe :

Total charge transferred due to changes of potential

R:

Resistance

S:

Area

SBPC:

Soybean phosphatidylcholine

sBLM:

Supported bilayer lipid membranes

tBLM:

Tethered bilayer lipid membranes

TBL:

Total fraction of phospholipids from bovine brain

V:

Voltage

12T:

Dodecanethiol

α:

Electrostriction coefficient

∆Φm :

Intrinsic membrane potential

ε:

Relative dielectric permittivity

ε0 :

Permittivity of free space

η:

Coefficient of dynamic viscosity

Ï„:

Relaxation time

References

  1. Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Nature 194: 979

    Article  CAS  Google Scholar 

  2. Del Castillo J, Rodriguez A, Romero CA, Sanchez V (1966) Science 153: 185

    Article  Google Scholar 

  3. McConnell HM, Watts TH, Weis RM, Brian AA (1988) Biochim Biophys Acta 864: 95

    Google Scholar 

  4. Tien HT, Salamon Z (1989) Bioelectrochem Bioenerg 22: 211

    Article  CAS  Google Scholar 

  5. Snejdarkova M, Rehak M, Otto M (1993) Anal Chem 65: 665

    Article  CAS  Google Scholar 

  6. Hianik T, Snejdarkova M, Passechnik VI, Rehak M, Babincova M (1996) Bioelectrochem Bionerg 41: 221

    Article  CAS  Google Scholar 

  7. Nikolelis DP, Hianik T, Krull UJ (1999) Electroanalysis 11: 7

    Article  CAS  Google Scholar 

  8. Hianik T (2000) Rev Mol Biotechnol 74: 189

    Article  CAS  Google Scholar 

  9. Florin EL, Gaub HE (1993) Biophys J 64: 375

    Article  CAS  Google Scholar 

  10. Mirsky VM, Mass M, Krause C, Wolfbeis OS (1998) Anal Chem 70: 3674

    Article  CAS  Google Scholar 

  11. Hianik T, Dlugopolsky J, Passechnik VI, Sargent DF, Ivanov SA (1996) Colloids Surf A 106: 109

    Article  CAS  Google Scholar 

  12. Uto M, Araki M, Taniguchi T, Hoschi S, Inoue S (1994) Anal Sci 10: 943

    Article  CAS  Google Scholar 

  13. Lu XD, Ottova-Leitmannova A, Tien HT, Bioelectrochem Bioenerg (1996) 39: 285

    Article  CAS  Google Scholar 

  14. Ziegler W, Gaburjakova J, Gaburjakova M, Sivak B, Rehacek V, Tvarozek V, Hianik T (1998) Colloids Surf A 140: 357

    Article  CAS  Google Scholar 

  15. Hianik T, Cervenanska Z, Krawczynsky vel Krawczyk T, Snejdarkova M (1998) Mater Sci Eng C 5: 301

    Article  Google Scholar 

  16. Guidelli R, Aloisi G, Becucci L, Dolfi A, Moncelli MR, Buoninsegni FT (2001) J Electroanal Chem 504: 1

    Article  CAS  Google Scholar 

  17. Knoll W, Frank CW, Heibel C, Naumann R, Offenhäuser A, Rühe J, Schmidt EK, Shen WW, Sinner A (2000) Rev Mol Biotechnol 74: 137

    Article  CAS  Google Scholar 

  18. Cornell BA, Braach-Maksvytis VLB, King L, Raguse BDJ, Wieczorek I, Pace RI (1997) Nature 387: 580

    Article  CAS  Google Scholar 

  19. Rao NM, Plant AL, Silin V, Wight S, Hui SW (1997) Biophys J 73: 3066

    Article  CAS  Google Scholar 

  20. Hianik T, Snejdarkova M, Passechnik VI, Rehak M, Babincova M (1996) Bioelectrochem Bioenerg 41: 221

    Article  CAS  Google Scholar 

  21. Hianik T, Dlugopolsky J, Gyepessovâ M, Sivâk B, Tien HT, Ottovâ-Leitmannovâ A (1996): Bioelectrochem Bioenerg 39: 299

    Article  CAS  Google Scholar 

  22. Sackmann E (1996) Science 271: 43

    Article  CAS  Google Scholar 

  23. Sleytr UB, Sara M (1997) Trends Biotechnol 15: 20

    Article  CAS  Google Scholar 

  24. Breitwieser A, Küpcü S, Howorka S, Weigert S, Langer C, Hoffmann-Sommergruber K, Scheiner O, Sleytr UB, Sara M (1996) BioTechniques 21: 918

    CAS  Google Scholar 

  25. Seifert K, Fendler K, Bamberg E (1993) Biophys J 64: 384

    Article  CAS  Google Scholar 

  26. Hianik T, Krivanek R, Masar E, Dujsik J, Snejdarkova M, Rehak M, Stepanek I, Nikolelis DP (1998) Gen Physiol Biophys 17: 239

    CAS  Google Scholar 

  27. Naumann R, Jonczyk A, Kopp R, Van Esch J, Ringsdorf H, Knoll W, Graber P (1995) Angew Chem Int Ed Eng134:2056

    Google Scholar 

  28. Pracker O, Naumann R, Ruhe J, Knoll W, Frank CW (1999) J Am Chem Soc 121: 8766

    Article  Google Scholar 

  29. Siontorou CG, Nikolelis DP, Piunno PAE, Krull UJ (1997) Electroanalysis 9: 1067

    Article  CAS  Google Scholar 

  30. Hianik T, Fajkus M, Sivak B, Rosenberg I, Kois P, Wang J (2000) Electroanalysis 12: 11

    Article  Google Scholar 

  31. Fajkus M, Hianik T (2002) Talanta 56: 895

    Article  CAS  Google Scholar 

  32. Nikolelis DP, Krull UJ (1993) Electroanalysis 5: 539

    Article  CAS  Google Scholar 

  33. Rehak M, Snejdarkova M, Otto M (1994) Biosens Bioelectron 9: 337

    Article  CAS  Google Scholar 

  34. Nikolelis DP, Siontorou CG (1995) Anal Chem 67: 936

    Article  CAS  Google Scholar 

  35. Nikolelis DP, Siontorou CG, Andreou VG, Krull UJ (1995) Electroanalysis 7: 531

    Article  CAS  Google Scholar 

  36. Nikolelis DP, Krull UJ (1992) Talanta 39: 1045

    Article  CAS  Google Scholar 

  37. Tvarozek V, Tien HT, Novotny I, Hianik T, Dlugopolsky J, Ziegler W, Leitmannovâ-Ottova A, Jakabovic J, Rehacek V, Uhlar M (1994) Sens Actuators B 19: 597

    Article  CAS  Google Scholar 

  38. Puu G, Gustafson I,Artursson E, Ohlsson PA (1995) Biosens Bioelectron 10: 463

    Article  CAS  Google Scholar 

  39. Lang H, Duschl C, Grätzel M, Vogel H (1992) Thin Solid Films 210–211: 818

    Article  Google Scholar 

  40. Hubbard JB, Silin V, Plant AL (1998) Biophys Chem 75: 163

    Article  CAS  Google Scholar 

  41. Spinke J, Yang J, Wolf H, Liley M, Ringsdorf H, Knoll W (1992) Biophys J 63: 1667

    Article  CAS  Google Scholar 

  42. Erdelen C, Haussling L, Naumann R, Ringsdorf H, Wolf H, Yang J, Liley M, Spinke J, Knoll W (1994) Langmuir 10: 1246

    Article  CAS  Google Scholar 

  43. Lang H, Duschl C, Vogel H (1994) Langmuir 10: 197

    Article  CAS  Google Scholar 

  44. Mirsky VM, Riepl M, Wolfbeis O (1997) Biosens Bioelectron 9–10: 977

    Article  Google Scholar 

  45. Snejdarkova M, Csaderova L, Rehak M, Hianik T (2000) Eletroanalysis 12: 940

    Article  CAS  Google Scholar 

  46. Novotny I, Rehacek V, Tvarozek V, Nikolelis DP, Andreou VG, Siontorou CG, Ziegler W (1997) Mater Sci Eng C 5: 55

    Article  Google Scholar 

  47. Ulman A (1991) An introduction to ultrathin organic films. From Langmuir-Blodgett to self assembly,1st edn. Academic, San Diego

    Google Scholar 

  48. Hianik T, Vozâr L (1985) Gen Physiol Biophys 4: 331

    CAS  Google Scholar 

  49. Hianik T, Kavecansky J, Zorad S, Macho L (1988) Gen Physiol Biophys 7: 191

    CAS  Google Scholar 

  50. Ohlsson PA, Tjarnhage T, Herbai E, Lofas S, Puu G (1995) Bioelectrochem Bioenerg 38: 137

    Article  CAS  Google Scholar 

  51. Dencher NA (1989) Methods Enzymol 171: 265

    Article  CAS  Google Scholar 

  52. Rivnay B, Bayer EA, Wilchek M (1987) Meth Enzymol 149: 121

    Google Scholar 

  53. Wilchek M, Bayer EA (1990) Meth Enzymol 184: 746

    Google Scholar 

  54. Noppl-Simson AA, Needham D (1996) Biophys J 70: 1391

    Article  CAS  Google Scholar 

  55. Pum D, Sleytr UB (1999) Trends Biotechnol 17: 8

    Article  CAS  Google Scholar 

  56. Hianik T, Passechnik VI (1995) Bilayer lipid membranes: structure and mechanical properties, 1st edn. Kluwer, Dordrecht

    Google Scholar 

  57. Passechnik VI, Hianik T (1997) Kolloid Zh 38: 1180

    Google Scholar 

  58. Carius W (1976) J Colloid Interface Sci 57: 301

    Article  CAS  Google Scholar 

  59. Sargent DF (1975) J Membrane Biol 23: 227

    Article  Google Scholar 

  60. Böttcher CJF (1952) Theory of electric polarization,1st edn. Elsevier, Amsterdam

    Google Scholar 

  61. Babakov AV, Ermishkin LM, Liberman EA (1966) Nature 210: 953

    Article  CAS  Google Scholar 

  62. White SH, Thompson TE (1973) Biochim Biophys Acta 323: 7

    Article  CAS  Google Scholar 

  63. Passechnik VI, Hianik T, Ivanov SA, Sivak B (1998) Electroanalysis 10: 295

    Article  CAS  Google Scholar 

  64. Haas H, Lamura G, Gliozzi A (2001) Bioelectrochemistry 54: 1

    Article  CAS  Google Scholar 

  65. Coster HGL, Simons R (1970) Biochim Biophys Acta 203: 17

    Article  CAS  Google Scholar 

  66. Hanai T, Haydon DA, Taylor JL (1964) Proc R Soc Lond A 281: 377

    Article  CAS  Google Scholar 

  67. Kruglyakov PM, Rovin YuG (1978) Physicochemistry of black hydrocarbon films, 1st edn. Nauka, Moscow

    Google Scholar 

  68. Hianik T, Passechnik VI, Sokolikova L, Snejdarkova M, Sivak B, Fajkus M, Ivanov SA, Franek M (1998) Bioelectrochem Bioenerg 47: 47

    Article  CAS  Google Scholar 

  69. Hianik T, Dlugopolsk J, Gyepessovâ M (1993) Bioelectrochem Bioenerg 31: 99

    Article  CAS  Google Scholar 

  70. Hianik T, Labajova A (2002) Bio electrochemistry 58: 97

    CAS  Google Scholar 

  71. Kuvichkin VV, Kuznetsova SM, Emeljanenko VI, Zhdanov RI, Petrov AI (1999) Biophys USSR 44: 430

    CAS  Google Scholar 

  72. Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E (1994) Biophys Chem 52: 267

    Article  CAS  Google Scholar 

  73. Zuidam NJ, Barenholz Y (1998) Biochim Biophys Acta 1368: 115

    Article  CAS  Google Scholar 

  74. Blanc I, Chazalet MSP (2000) Biochim Biophys Acta 1464: 309

    Article  CAS  Google Scholar 

  75. Petrov AI, Khalil DN, Kazaryan RI, Sukhorukov BI (2002) Bioelectrochemistry 58: 77

    Article  Google Scholar 

  76. Kharakoz DP, Khusainova RS, Gorelov AV, Dawson KA (1999) FEBS Lett 446: 27

    Article  CAS  Google Scholar 

  77. Hui SW, Langner M, Zhao Y-L, Ross P, Hurley E, Chan K (1996) Biophys J 71: 590

    Article  CAS  Google Scholar 

  78. Zhdanov RI, Podobed OV, Vlasov VV (2002) Bioelectrochemistry 58: 53

    Article  CAS  Google Scholar 

  79. Schreirer S, Malheiros SVP, De Paula E (2000) Biochim Biophys Acta 1508: 210

    Article  Google Scholar 

  80. Sukhorukov BI, Montrel MM, Sukhorukov GB, Shabarchina LI (1994) Biophys USSR 39: 273

    Google Scholar 

  81. Montrel MM, Sukhorukov GB, Petrov AI, Shabarchina LI, Sukhorukov BI (1997) Sens Actuators B 42: 225

    Article  Google Scholar 

  82. Sukhorukov BI, Petrov AI, Kazarian RL, Kuvichkin VV (2000) Biophys USSR 45: 245

    CAS  Google Scholar 

  83. Siontorou CG, Brett AMO, Nikolelis DP (1996) Talanta 43: 1137

    Article  CAS  Google Scholar 

  84. Siontorou CG, Nikolelis DP, Piunno PA, Krull UJ (1997) Electroanalysis 9: 14

    Google Scholar 

  85. Oretskaya TS, Romanova EA, Andreev SYu, Antsypovich SI, Toth C, Gajdos V, Hianik T (2002) Bioelectrochemistry 56: 47

    Article  CAS  Google Scholar 

  86. Hianik T, Fajkus M, Tomcik P, Rosenberg I, Kois P, Cirak J, Wang J (2001) Chem Monthly 132: 141

    Article  CAS  Google Scholar 

  87. Hianik T, Vitovic P, Humenik D, Andreev S-Yu, Oretskaya TS, Hall EAH, Vadgama P (2003) Bioelectrochemistry 59: 35

    Article  CAS  Google Scholar 

  88. Hianik T, Gajdos V, Krivanek R, Oretskaya T, Metelev V, Volkov E, Vadgama P (2001) Bioe-lectrochemistry 53: 199

    CAS  Google Scholar 

  89. Yeagle PL (1985) Biochim Biophys Acta 822: 267

    Article  CAS  Google Scholar 

  90. Hianik T, Haburcak M (1993) Gen Physiol Biophys 12: 283

    CAS  Google Scholar 

  91. May S, Harries D, Ben-Shaul A (2000) Biophys J 78: 1681

    Article  CAS  Google Scholar 

  92. Scatchard G (1949) Ann N Y Acad Sci 51: 660

    Article  CAS  Google Scholar 

  93. Sargent DF, Hianik T (1994) Bioelectrochem Bioenerg 33: 11

    Article  CAS  Google Scholar 

  94. Degani Y, Heller A (1989) J Am Chem Soc 111: 2357

    Article  CAS  Google Scholar 

  95. Hianik T, Snejdarkova M, Sokolikova L, Meszar E, Krivanek R, Tvarozek V, Novotny I, Wang J (1999) Sens Actuators B 57: 201

    Article  Google Scholar 

  96. Davis JH (1983) Biochim Biophys Acta 737: 117

    Article  CAS  Google Scholar 

  97. Laggner P. Kriechbaum M (1991) Chem Phys Lipids 57: 121

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hianik, T. (2004). Electrostriction of Supported Lipid Membranes and Their Application in Biosensing. In: Mirsky, V.M. (eds) Ultrathin Electrochemical Chemo- and Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05204-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05204-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05961-2

  • Online ISBN: 978-3-662-05204-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics