Weather Radar pp 199-234 | Cite as

Precipitation Measurements from Space

  • Jacques Testud
Part of the Physics of Earth and Space Environments book series (EARTH)


Weather radars on airborne or spaceborne platforms have been conceived to overcome the limitations of ground based systems. While spaceborne systems aim to sample the precipitation on a global scale, airborne radars are used for two purposes:
  1. 1.

    to serve as a demonstrator for future spaceborne systems and as such, help development and test of retrieval algorithms;

  2. 2.

    to be used in field experiments where the flexibility of the mobile platform is exploited for specific purposes.



Tropical Rainfall Measure Mission Rain Rate Liquid Water Content Doppler Radar Radar Reflectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andsager, K., K.V. Beard, and N.F. Laird, 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 2673–2683.CrossRefGoogle Scholar
  2. 2.
    Bauer, P., 2001: Over-ocean rainfall retrieval from multi-sensor data of the Tropical Rainfall Measuring Mission (TRMM)-Part I: Development of inversion databases. J. Atmos. Oceanic Technol., 18, 1315–1330.CrossRefGoogle Scholar
  3. 3.
    Bauer, P., P. Amayenc, C.D. Kummerow, and E.A. Smith, 2001: Over-ocean rainfall retrieval from multi-sensor data of the Tropical Rainfall Measuring Mission (TRMM)-Part II: Algorithm implementation. J. Atmos. Oceanic Technol., 18, 1838–1855.CrossRefGoogle Scholar
  4. 4.
    Beard K.V. and C. Chuang, 1987: A new model for equilibrium shape of raindrops, J. Atmos. Oceanic Technol. 44, 1509–1524.Google Scholar
  5. 5.
    Chong, M., and J. Testud, 1983: Three-dimensional wind field analysis from dual Doppler radar data. Part III–The boundary condition: an optimum determination based on a variational concept. J. Climate Appl. Meteorol., 22 (7), 1227–1241.CrossRefGoogle Scholar
  6. 6.
    Chong, M., J. Testud, and F. Roux, 1983: Three-dimensional wind field analysis from dual Doppler radar data. Part II–Minimizing the error due to temporal variation, J. Climate Appl. Meteorol., 22 (7), 1216–1226.CrossRefGoogle Scholar
  7. 7.
    Chong, M., and J. Testud, 1996: Three-dimensional air circulation in a squall line from airborne dual-beam Doppler radar, 1996: a test of coplan methodology software. J. Atmos. Oceanic Technol. 13 (1), 36–53.CrossRefGoogle Scholar
  8. 8.
    Ferreira F., P. Amayenc, S. Oury, and J. Testud, 2001: Study and tests of improved rain estimates from the TRMM precipitation radar, J. Appl. Meteorol., 40, 1878–1899.CrossRefGoogle Scholar
  9. 9.
    Hildebrand, P.H., W.-C. Lee, C.A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. Le Cornec, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: Design and observation from TOGA COARE. Bull. Am. Meteorol. Soc., February 1996, 213–232.Google Scholar
  10. 10.
    Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteorol., 11, 58–67.CrossRefGoogle Scholar
  11. 11.
    Iguchi, T. and R. Meneghini, 1994: Intercomparisons of single frequency methods of retrieving a vertical rain profile from airborne or space-borne radar data. J. Atmos. Oceanic Technol., 11, 1507–1516.CrossRefGoogle Scholar
  12. 12.
    Iguchi, T. and R. Meneghini, 1995: Differential equations for dual-frequency radar returns. Proc. 27th Conf. Radar Meteorol., AMS, pp. 190–193.Google Scholar
  13. 13.
    Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteorol., 39, 2038–2052.CrossRefGoogle Scholar
  14. 14.
    Jorgensen D.P., T. Matejka and J.D. Dugranrut, 1996: Multibeam technique for deriving wind fields from airborne Doppler radar. Meteorol. Atmos. Phys., 59, 85–104.CrossRefGoogle Scholar
  15. 15.
    Kabèche, A., and J. Testud, Stereoradar meteorology, 1995: A new unified approach to process data from airborne or ground-based meteorological radars. J. Atmos. Oceanic Technol. 12 (4), 783–799.Google Scholar
  16. 16.
    Kozu, T. and K. Nakamura, 1991: Rainfall parameter estimation from dual radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259–270.CrossRefGoogle Scholar
  17. 17.
    Kozu, T., K. Nakamura, R. Meneghini, and W.C. Boncyk, 1991: Dual-parameter radar rainfall measurement from space: a test result from an aircraft experiment. IEEE Trans. Geosci. Remote Sensing, 29, 690–703.CrossRefGoogle Scholar
  18. 18.
    Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.CrossRefGoogle Scholar
  19. 19.
    Le Bouar E., J. Testud and T. Keenan, 2001: Validation of the rain profiling algorithm “ ZPHI ” from the C-band polarimetric weather radar in Darwin. J. Atmos. Oceanic Technol, 18, N11, 1819–1837.CrossRefGoogle Scholar
  20. 20.
    Marzoug, M., and P. Amayenc, 1994: A class of single-and dual-frequency algorithms for rain-rate profiling from a space-borne radar. Part I: Principle and tests from numerical simulations. J. Atmos. Oceanic Technol., 11, 1480–1506.CrossRefGoogle Scholar
  21. 21.
    Meneghini, R., and K. Nakamura, 1990: Range profiling of the rain rate by an airborne weather radar. Remote Sensing Environ., 31, 193–209.CrossRefGoogle Scholar
  22. 22.
    Oury S., J. Testud et V. Marécal, 1999: Estimate of precipitation from the dual beam airborne radar in TOGA-COARE. Part 1: The K—Z relationships derived from the stereo-and quad beam analysis. J. Appl. Meteorol. 38 (2), 156–174.CrossRefGoogle Scholar
  23. 23.
    Oury S., J. Testud and X.-K. Dou, 2000: Estimate of precipitation from the dual beam airborne radars in Toga-Coare. Part 2: Precipitation efficiency in convective cells. Case study of 9th February 1993, J. Appl. Meteorol. 39, 2371–2384.CrossRefGoogle Scholar
  24. 24.
    Protat, A., Y. Lemaitre, and G. Scialom, 1998: Thermodynamic analytical fields from Doppler radar data by means of the MANDOP analysis. Q. J. R. Meteorol. Soc., 124, 1633–1669.CrossRefGoogle Scholar
  25. 25.
    Scialom G. and Y. Lemaitre, 1990: A new analysis for the retrieval of the three-dimensional wind field from multiple Doppler radars. J. Atmos. Oceanic Technol., 7, 640–665.CrossRefGoogle Scholar
  26. 26.
    Sekhon R.S. and R.C. Srisvastava, 1971: Doppler radar observations of dropsize distributions, J. Atmos. Sci., 28, 983–994.CrossRefGoogle Scholar
  27. 27.
    Sempere Torres, S.D., J.M. Porrà and J.-D. Creutin, 1994: A general formulation for raindrop size distribution, J. Geophys. Res. (D), 103, 1785–1797.CrossRefGoogle Scholar
  28. 28.
    Testud, J. and M. Chong, 1983: Three-dimensional wind field analysis from dual Doppler radar data. Part I–Filtering, interpolating, and differentiating the raw data, J. Climate Appl. Meteorol., 22 (7), 1204–1215.CrossRefGoogle Scholar
  29. 29.
    Testud J., E. Le Bouar, E. Obligis, M. Ali Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol. 17 (3), 332–356.CrossRefGoogle Scholar
  30. 30.
    Testud J. et S. Oury: 1997: Algorithme de correction d’atténuation pour radar météorologique, C.R. Acad. Sci. Paris, 324, série2a, 705–710.Google Scholar
  31. 31.
    Testud, J., P. Amayenc, and M. Marzoug, 1992: Rainfall rate retrieval from space-borne radar: comparison between single frequency, dual-frequency and dual-beam techniques. J. Atmos. Oceanic Technol., 9 (5), 599–623.CrossRefGoogle Scholar
  32. 32.
    Testud J., S. Oury, P. Amayenc and R. Black, 2001: The concept of “normalized” distribution to describe raindrop spectra: a tool for cloud physics and cloud remote sensing. J. Appl. Meteorol., 40 (6), 1118–1140.CrossRefGoogle Scholar
  33. 33.
    Ulbrich C.W.,1983: Natural variations in the analytical form of the drop size distribution. J. Climate Appl. Meteorol., 22, 1764–1775.Google Scholar
  34. 34.
    Willis P.T., 1984: Functional fits to some observed dropsize distributions and parameterization of rain, J. Atmos. Sci., 41, 1648–1661.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jacques Testud
    • 1
  1. 1.CETPVelizyFrance

Personalised recommendations