Skip to main content

Understanding Severe Weather Systems Using Doppler and Polarisation Radar

  • Chapter
Weather Radar

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

With increasing population, the impact of severe weather on socioeconomic systems is increasing worldwide. This is underlined by spectacular incidences of flash floods, hurricanes, and hail events with their impact on air and ground based transportation systems or big events like the Olympic games (Parker, 2000; Pielke and Pielke, 1999). Further, the interaction with the global climate system, with vertical exchange of trace gases by deep convective systems, on one side, and the increased variability of severe weather as a result of global warming, on the other side, is becoming more and more a focus of research. All these topics call for a better understanding of severe weather systems with the goal of improving forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishnan, N. and D.S. Zrnie, 1990: Use of polarization to characterise precipitation and discriminate large hail. J. Atmos. Sci., 47, 1525–1540.

    Article  Google Scholar 

  2. Browning K.A., 1990: Organisation and internal structure of synoptic and mesoscale precipitation systems in midlatitudes. Radar in Meteorology. Am. Meteorol. Soc., Boston, pp. 433–460.

    Google Scholar 

  3. Browning K.A., 1977: The structure and mechanisms of hailstorms. In Foote G.B. and C.A. Knight (Eds.): Hail: A Review of Hail Science and Hail Suppression. Am. Meteorol. Soc. Boston, pp. 1–43.

    Google Scholar 

  4. Caylor, I.J. and V. Chandrasekar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sensing, 34, 847–858.

    Article  Google Scholar 

  5. Dotzek, N., 2002a: Severe local storms and the insurance industry. J. Meteorol., 27, 3–12, 189.

    Google Scholar 

  6. Dotzek, N., 2002b: An updated estimate of tornado occurrence in Europe. Submitted to Atmos. Res., 56, 233–252.

    Google Scholar 

  7. Dotzek, N., 2001: Tornadoes in Germany. Atmos. Res. 56, 233–252.

    Article  Google Scholar 

  8. Dotzek, N., H. Höller, C. Théry, and T. Fehr, 2001: Lightning evolution related to radar—derived microphysics in the 21 July 1998 EULINOX supercell storm. Atmos. Res. 56, 335–354.

    Article  Google Scholar 

  9. Dotzek, N., G. Berz, E. Rauch, and R. E. Peterson, 2000: Die Bedeutung von Johannes P. Letzmanns “Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen and Kleintromben” für die heutige Tornadoforschung. Meteorol. Zeitschr., 9, 165–174.

    Google Scholar 

  10. Finke, U., and T. Hauf, 1996: The characteristics of lightning occurrence in southern Germany. Atmos. Phys. 69, 361–374.

    Google Scholar 

  11. Foote, G.B., 1985: Aspects of cumulonimbus classification relevant to the hail problem. J. Rech. Atmos., 19, 61–74.

    Google Scholar 

  12. Fujita, T.T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1511–1534.

    Article  Google Scholar 

  13. Gysi, H., 1995: Niederschlagsmessung mit Radar in orographisch gegliedertem Gelände. Dissertation, Univ. Karlsruhe.

    Google Scholar 

  14. Haase-Straub S.P., M. Hagen, T. Hauf, D. Heimann, M. Peristeri and R.K. Smith, 1997: The squall line of 21 July 1992 in Southern Germany: An observational case study. Beitr. Phys., 48, 231–381.

    Google Scholar 

  15. Hagen, M., B. Bartenschlager, and U. Finke, 1999: Motion characteristics of thunderstorms in southern Germany. Meteorol. Appl., 6, 227–239.

    Article  Google Scholar 

  16. Hagen, M. 1992: On the appearance of a cold front with a narrow rain-band in the vicinity of the Alps. Meteorol. Atmos. Phys. 48, 231–248.

    Article  Google Scholar 

  17. Hannesen, R., N. Dotzek, and J. Handwerker, 2000: Radar analysis of a tornado over hilly terrain on 23 July 1996. Phys. and Chem. of the Earth, Part B, 25, 1079–1084.

    Article  Google Scholar 

  18. Hannesen, R., N. Dotzek, H. Gysi, and K. D. Beheng, 1998: Case study of a tornado in the Upper Rhine valley. Meteorol. Zeitschr., 7, 163–170.

    Google Scholar 

  19. Hobbs, P.W., 1987: Organisation and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16 (4), 741–755.

    Article  Google Scholar 

  20. Höller H. and U. Schumann, 2000: The European Lightning Nitrogen Oxides Project DLR-FB 2000–28.

    Google Scholar 

  21. Höller H., V.N. Bringi, J. Hubbert, M. Hagen and P.F. Meischner, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 2500–2522.

    Article  Google Scholar 

  22. Höller, H. and M.E. Reinhardt, 1986: The Munich hailstorm of July 12, 1984–Convective development and preliminary hailstone analysis. Beitr. Phys. Atmos. 59, 1–12.

    Google Scholar 

  23. Kennedy, P.C., N.E. Westcott and R.W. Scott, 1993: Single-Doppler radar observations of a mini-supercell tornadic thunderstorm. Mon. Weather Rev., 121, 1860–1870.

    Article  Google Scholar 

  24. Kerr, B.W. and G.L. Darkow, 1996: Storm-relative winds and helicity in the tornadic thunderstorm environment. Wea. Forecasting, 11, 489–505.

    Article  Google Scholar 

  25. Linder, W. and W. Schmid, 1996: A tornadic thunderstorm in Switzerland exhibiting a radar-detectable low-level vortex. Proc. 12th Int. Conf. Clouds Precip., Zürich, pp. 577–580.

    Google Scholar 

  26. Meaden, G.T., 1976: Tornadoes in Britain: their intensities and distribution in space and time. J. Meteorol., 1, 242–251.

    Google Scholar 

  27. Meischner, P.F., R. Baumann, H. Höller and T. Jank, 2001: Eddy dissipation rates in thunderstorms estimated by Doppler radar in relation to aircraft in situ measurements. J. Atmos. Oceanic Technol., 1609–1627.

    Google Scholar 

  28. Meischner, P.F., V.N. Bringi, D. Heimann and H. Höller. 1991: A squall line in Southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Weather Rev. 119, 678–701.

    Article  Google Scholar 

  29. Morris, R.M., 1986: The Spanish plume–testing the forecaster’s nerve. Meteorol. Mag., 115, 349–357.

    Google Scholar 

  30. Nelson, S.P. and N.C. Knight, 1987: The hybrid multicellular-supercellular storm - an efficient hail producer. Part I: An archetypal example. J. Atmos. Sci. 44, 2042–2059.

    Google Scholar 

  31. Nelson, S.P., 1987: The hybrid multicellular-supercellular storm - an efficient hail producer. Part II: General characteristics and implications for hail growth. J. Atmos. Sci. 44, 2060–2073.

    Google Scholar 

  32. Nestle, R., 1969: Der Tornado vom 10.07.1968 im Raum Pforzheim. Meteorol. Rdsch., 22, 1–3.

    Google Scholar 

  33. Parker, D.J. (Ed.), 2000: Floods. Routledge, London and New York.

    Google Scholar 

  34. Paul, A.H., 1973: The heavy hail of 23–24 July 1971 on the western prairies of Canada. Weather 28, 463–471.

    Article  Google Scholar 

  35. Pielke Jr., R., and R. Pielke Sr. (Eds.), 1999: Storms, Vol. II, Routledge Hazards and Disasters Ser. 2, pp. 103–132. Routledge, London and New York.

    Google Scholar 

  36. Rotunno, R., J.B. Klemp and W.L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 406–426.

    Article  Google Scholar 

  37. Schroth A.C., M.S. Chandra and P.F. Meischner, 1988: A C-band coherent polarimetric radar for propagation and cloud physics research. J. Atmos. Oceanic Technol., 5, 803–822.

    Article  Google Scholar 

  38. Seliga, T.A. and V.N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol., 15, 69–76.

    Article  Google Scholar 

  39. Straka, J.M. and D.S. Zrnie, 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Proc. 26th Conf. Radar Meteorol., AMS, pp. 513–515.

    Google Scholar 

  40. Weisman, U.M., J.B. Klemp and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.

    Article  Google Scholar 

  41. Weisman, M.L. and J.B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Weather Rev., 112, 2479–2498.

    Article  Google Scholar 

  42. Wegener, A., 1917: Wind-and Wasserhosen in Europa. Friedrich Vieweg and Sohn, Braunschweig.

    Google Scholar 

  43. Wilhelmson, R.B. and J.B. Klemp, 1981: A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38 (8), 1581–1600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meischner, P., Dotzek, N., Hagen, M., Höller, H. (2004). Understanding Severe Weather Systems Using Doppler and Polarisation Radar. In: Meischner, P. (eds) Weather Radar. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05202-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05202-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05561-4

  • Online ISBN: 978-3-662-05202-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics