Weather Radar pp 167-198 | Cite as

Understanding Severe Weather Systems Using Doppler and Polarisation Radar

  • Peter Meischner
  • Nikolai Dotzek
  • Martin Hagen
  • Hartmut Höller
Part of the Physics of Earth and Space Environments book series (EARTH)


With increasing population, the impact of severe weather on socioeconomic systems is increasing worldwide. This is underlined by spectacular incidences of flash floods, hurricanes, and hail events with their impact on air and ground based transportation systems or big events like the Olympic games (Parker, 2000; Pielke and Pielke, 1999). Further, the interaction with the global climate system, with vertical exchange of trace gases by deep convective systems, on one side, and the increased variability of severe weather as a result of global warming, on the other side, is becoming more and more a focus of research. All these topics call for a better understanding of severe weather systems with the goal of improving forecasts.


Doppler Velocity Doppler Radar Radar Reflectivity Squall Line Gust Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balakrishnan, N. and D.S. Zrnie, 1990: Use of polarization to characterise precipitation and discriminate large hail. J. Atmos. Sci., 47, 1525–1540.CrossRefGoogle Scholar
  2. 2.
    Browning K.A., 1990: Organisation and internal structure of synoptic and mesoscale precipitation systems in midlatitudes. Radar in Meteorology. Am. Meteorol. Soc., Boston, pp. 433–460.Google Scholar
  3. 3.
    Browning K.A., 1977: The structure and mechanisms of hailstorms. In Foote G.B. and C.A. Knight (Eds.): Hail: A Review of Hail Science and Hail Suppression. Am. Meteorol. Soc. Boston, pp. 1–43.Google Scholar
  4. 4.
    Caylor, I.J. and V. Chandrasekar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sensing, 34, 847–858.CrossRefGoogle Scholar
  5. 5.
    Dotzek, N., 2002a: Severe local storms and the insurance industry. J. Meteorol., 27, 3–12, 189.Google Scholar
  6. 6.
    Dotzek, N., 2002b: An updated estimate of tornado occurrence in Europe. Submitted to Atmos. Res., 56, 233–252.Google Scholar
  7. 7.
    Dotzek, N., 2001: Tornadoes in Germany. Atmos. Res. 56, 233–252.CrossRefGoogle Scholar
  8. 8.
    Dotzek, N., H. Höller, C. Théry, and T. Fehr, 2001: Lightning evolution related to radar—derived microphysics in the 21 July 1998 EULINOX supercell storm. Atmos. Res. 56, 335–354.CrossRefGoogle Scholar
  9. 9.
    Dotzek, N., G. Berz, E. Rauch, and R. E. Peterson, 2000: Die Bedeutung von Johannes P. Letzmanns “Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen and Kleintromben” für die heutige Tornadoforschung. Meteorol. Zeitschr., 9, 165–174.Google Scholar
  10. 10.
    Finke, U., and T. Hauf, 1996: The characteristics of lightning occurrence in southern Germany. Atmos. Phys. 69, 361–374.Google Scholar
  11. 11.
    Foote, G.B., 1985: Aspects of cumulonimbus classification relevant to the hail problem. J. Rech. Atmos., 19, 61–74.Google Scholar
  12. 12.
    Fujita, T.T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1511–1534.CrossRefGoogle Scholar
  13. 13.
    Gysi, H., 1995: Niederschlagsmessung mit Radar in orographisch gegliedertem Gelände. Dissertation, Univ. Karlsruhe.Google Scholar
  14. 14.
    Haase-Straub S.P., M. Hagen, T. Hauf, D. Heimann, M. Peristeri and R.K. Smith, 1997: The squall line of 21 July 1992 in Southern Germany: An observational case study. Beitr. Phys., 48, 231–381.Google Scholar
  15. 15.
    Hagen, M., B. Bartenschlager, and U. Finke, 1999: Motion characteristics of thunderstorms in southern Germany. Meteorol. Appl., 6, 227–239.CrossRefGoogle Scholar
  16. 16.
    Hagen, M. 1992: On the appearance of a cold front with a narrow rain-band in the vicinity of the Alps. Meteorol. Atmos. Phys. 48, 231–248.CrossRefGoogle Scholar
  17. 17.
    Hannesen, R., N. Dotzek, and J. Handwerker, 2000: Radar analysis of a tornado over hilly terrain on 23 July 1996. Phys. and Chem. of the Earth, Part B, 25, 1079–1084.CrossRefGoogle Scholar
  18. 18.
    Hannesen, R., N. Dotzek, H. Gysi, and K. D. Beheng, 1998: Case study of a tornado in the Upper Rhine valley. Meteorol. Zeitschr., 7, 163–170.Google Scholar
  19. 19.
    Hobbs, P.W., 1987: Organisation and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16 (4), 741–755.CrossRefGoogle Scholar
  20. 20.
    Höller H. and U. Schumann, 2000: The European Lightning Nitrogen Oxides Project DLR-FB 2000–28.Google Scholar
  21. 21.
    Höller H., V.N. Bringi, J. Hubbert, M. Hagen and P.F. Meischner, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 2500–2522.CrossRefGoogle Scholar
  22. 22.
    Höller, H. and M.E. Reinhardt, 1986: The Munich hailstorm of July 12, 1984–Convective development and preliminary hailstone analysis. Beitr. Phys. Atmos. 59, 1–12.Google Scholar
  23. 23.
    Kennedy, P.C., N.E. Westcott and R.W. Scott, 1993: Single-Doppler radar observations of a mini-supercell tornadic thunderstorm. Mon. Weather Rev., 121, 1860–1870.CrossRefGoogle Scholar
  24. 24.
    Kerr, B.W. and G.L. Darkow, 1996: Storm-relative winds and helicity in the tornadic thunderstorm environment. Wea. Forecasting, 11, 489–505.CrossRefGoogle Scholar
  25. 25.
    Linder, W. and W. Schmid, 1996: A tornadic thunderstorm in Switzerland exhibiting a radar-detectable low-level vortex. Proc. 12th Int. Conf. Clouds Precip., Zürich, pp. 577–580.Google Scholar
  26. 26.
    Meaden, G.T., 1976: Tornadoes in Britain: their intensities and distribution in space and time. J. Meteorol., 1, 242–251.Google Scholar
  27. 27.
    Meischner, P.F., R. Baumann, H. Höller and T. Jank, 2001: Eddy dissipation rates in thunderstorms estimated by Doppler radar in relation to aircraft in situ measurements. J. Atmos. Oceanic Technol., 1609–1627.Google Scholar
  28. 28.
    Meischner, P.F., V.N. Bringi, D. Heimann and H. Höller. 1991: A squall line in Southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Weather Rev. 119, 678–701.CrossRefGoogle Scholar
  29. 29.
    Morris, R.M., 1986: The Spanish plume–testing the forecaster’s nerve. Meteorol. Mag., 115, 349–357.Google Scholar
  30. 30.
    Nelson, S.P. and N.C. Knight, 1987: The hybrid multicellular-supercellular storm - an efficient hail producer. Part I: An archetypal example. J. Atmos. Sci. 44, 2042–2059.Google Scholar
  31. 31.
    Nelson, S.P., 1987: The hybrid multicellular-supercellular storm - an efficient hail producer. Part II: General characteristics and implications for hail growth. J. Atmos. Sci. 44, 2060–2073.Google Scholar
  32. 32.
    Nestle, R., 1969: Der Tornado vom 10.07.1968 im Raum Pforzheim. Meteorol. Rdsch., 22, 1–3.Google Scholar
  33. 33.
    Parker, D.J. (Ed.), 2000: Floods. Routledge, London and New York.Google Scholar
  34. 34.
    Paul, A.H., 1973: The heavy hail of 23–24 July 1971 on the western prairies of Canada. Weather 28, 463–471.CrossRefGoogle Scholar
  35. 35.
    Pielke Jr., R., and R. Pielke Sr. (Eds.), 1999: Storms, Vol. II, Routledge Hazards and Disasters Ser. 2, pp. 103–132. Routledge, London and New York.Google Scholar
  36. 36.
    Rotunno, R., J.B. Klemp and W.L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 406–426.CrossRefGoogle Scholar
  37. 37.
    Schroth A.C., M.S. Chandra and P.F. Meischner, 1988: A C-band coherent polarimetric radar for propagation and cloud physics research. J. Atmos. Oceanic Technol., 5, 803–822.CrossRefGoogle Scholar
  38. 38.
    Seliga, T.A. and V.N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol., 15, 69–76.CrossRefGoogle Scholar
  39. 39.
    Straka, J.M. and D.S. Zrnie, 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Proc. 26th Conf. Radar Meteorol., AMS, pp. 513–515.Google Scholar
  40. 40.
    Weisman, U.M., J.B. Klemp and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.CrossRefGoogle Scholar
  41. 41.
    Weisman, M.L. and J.B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Weather Rev., 112, 2479–2498.CrossRefGoogle Scholar
  42. 42.
    Wegener, A., 1917: Wind-and Wasserhosen in Europa. Friedrich Vieweg and Sohn, Braunschweig.Google Scholar
  43. 43.
    Wilhelmson, R.B. and J.B. Klemp, 1981: A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38 (8), 1581–1600.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Peter Meischner
    • 1
  • Nikolai Dotzek
    • 1
  • Martin Hagen
    • 1
  • Hartmut Höller
    • 1
  1. 1.Institut für Physik der AtmosphäreDLROberpfaffenhofenGermany

Personalised recommendations