Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 140))

  • 508 Accesses

Abstract

The concept of multifractals described in Chap. 4 dramatically improves our understanding of complex distributions of quantities in physical systems. The importance of multifractal analysis is ensured by the fact that an entire spectrum of exponents τ (q) or f (α) describes not only the profile of the distribution but also dynamical properties of the system. This is well demonstrated by the case of the Anderson transition. The Anderson transition is a disorder-induced metal—insulator transition in a non-interacting electron gas at zero temperature. The insulating phase is a consequence of the localization of electron wavefunctions, which is called Anderson localization. Anderson localization is caused by quantum interference of an electron wave scattered by disordered potentials. At the Anderson transition point, the squared amplitude of the electron wavefunction distributes in a multifractal manner. Critical properties of the Anderson transition are deeply related to the multifractality of critical wavefunctions. It is therefore important to study the multifractal nature of the Anderson transition. In this and the next chapter, we show that distributions of a critical wavefunction at the Anderson transition point and the energy spectrum are multifractal. Some exponents characterizing their multifractality are related to dynamical properties of electrons. This chapter aims to explain what the Anderson transition is, and thus serves as an introduction to the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aharonov, D. Bohm: Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Y. Imry: Introduction to Mesoscopic Physics (Oxford University Press, New York 1997)

    Google Scholar 

  3. P.W. Anderson: Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  4. G. Bergmann: Phys. Rev. B 28, 2914 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  5. D.E. Khmel’nitskii: Physica 126B, 235 (1984)

    Google Scholar 

  6. A.I. Larkin, D.E. Khmel’nitskii: Usp. Fiz. Nauk 136, 536 (1982) [Sov. Phys. Usp. 25, 185 (1982)]

    Article  Google Scholar 

  7. S. Hikami, A.I. Larkin, Y. Nagaoka: Prog. Theor. Phys. 63, 707 (1980)

    Article  ADS  Google Scholar 

  8. B.L. Altshuler, D.E. Khmel’nitskii, A.I. Larkin, P.A. Lee: Phys. Rev. B 22, 5142 (1980)

    Article  ADS  Google Scholar 

  9. Y. Kawaguchi, S. Kawaji: J. Phys. Soc. Jpn. 48, 699 (1980)

    Article  ADS  Google Scholar 

  10. See, for example, C.W. Beenakker, H. van Houten: In Solid State Physics 44, ed. by H. Ehrenreich, D. Turnbull (Academic Press, New York 1991) pp. 1–228

    Google Scholar 

  11. J.J. Sakurai: Modern Quantum Mechanics, 2nd edn. (Addison-Wesley, Massachusetts 1994)

    Google Scholar 

  12. G. Bergmann: Phys. Rep. 107, 1 (1984)

    Article  ADS  Google Scholar 

  13. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan: Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  14. F. Wegner: Z. Phys. B 25, 327 (1976)

    Article  ADS  Google Scholar 

  15. M. Janssen: Fluctuations and Localization in Mesoscopic Electron Systems (World Scientific, Singapore 2001)

    Google Scholar 

  16. J.L. Cardy: Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge 1996)

    Google Scholar 

  17. M.L. Mehta: Random Matrices, 2nd edn. (Academic Press, New York 1991)

    MATH  Google Scholar 

  18. C.W. Beenakker: Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

  19. T. Guhr, A. Müller-Groeling, H.A. Weidenmüller: Phys. Rep. 299, 189 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  20. K.B. Efetov: Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge 1997)

    MATH  Google Scholar 

  21. E. Hofstetter, M. Schreiber: Phys. Rev. Lett. 73, 3137 (1994)

    Article  ADS  Google Scholar 

  22. T. Ando: Phys. Rev. B 40, 5325 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  23. S.N. Evangelou: Phys. Rev. Lett. 75, 2550 (1995)

    Article  ADS  Google Scholar 

  24. Y. Asada, K. Slevin, T. Ohtsuki: Phys. Rev. Lett. 89, 256601 (2002)

    Article  ADS  Google Scholar 

  25. A. MacKinnon, B. Kramer: Z. Phys. B 53, 1 (1983)

    Article  ADS  Google Scholar 

  26. B. Kramer, A. MacKinnon: Rep. Prog. Phys. 56, 1469 (1993)

    Article  ADS  Google Scholar 

  27. I. Varga, E. Hofstetter, J. Pipek: Phys. Rev. Lett. 82, 4683 (1999)

    Article  ADS  Google Scholar 

  28. B. Huckestein: Rev. Mod. Phys. 67, 357 (1995)

    Article  ADS  Google Scholar 

  29. See, for example, K. Slevin, T. Ohtsuki: Phys. Rev. Lett. 82, 382 (1999)

    Article  ADS  Google Scholar 

  30. L.W. Engel, D. Shahar, Ç. Kurdak, D.C. Tsui: Phys. Rev. Lett. 71, 2638 (1993)

    Article  ADS  Google Scholar 

  31. H. Shima, T. Nakayama: J. Phys. Soc. Jpn. 67, 2189 (1998)

    Article  ADS  Google Scholar 

  32. H. Shima, T. Nakayama: Phys. Rev. B 60, 14066 (1999)

    Article  ADS  Google Scholar 

  33. T. Nakayama, K. Yakubo: Phys. Rep. 349, 239 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. B.M. Gammel, W. Brenig: Phys. Rev. B 53, 13279 (1996)

    Article  ADS  Google Scholar 

  35. T. Ohtsuki, T. Kawarabayashi: J. Phys. Soc. Jpn. 66, 314 (1997)

    Article  ADS  Google Scholar 

  36. J. Zhong, R.B. Diener, D.A. Steck, W.H. Oskay, M.G. Raizen, E.W. Plummer, Z. Zhong, Q. Niu: Phys. Rev. Lett. 86, 2485 (2001)

    Article  ADS  Google Scholar 

  37. J.T. Chalker, G.J. Daniell: Phys. Rev. Lett. 61, 592 (1988)

    Article  ADS  Google Scholar 

  38. L. Schweitzer: J. Phys. Condens. Matter 7, L281 (1995)

    Article  ADS  Google Scholar 

  39. B. Huckestein, R. Klesse: Phil. Mag. B 77, 1181 (1998)

    Article  ADS  Google Scholar 

  40. J.T. Chalker, P.D. Coddington: J. Phys. C 21, 2665 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakayama, T., Yakubo, K. (2003). Anderson Transition. In: Fractal Concepts in Condensed Matter Physics. Springer Series in Solid-State Sciences, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05193-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05193-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05711-3

  • Online ISBN: 978-3-662-05193-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics