Skip to main content

The Carbon Sink Strength of Forests in Europe: a Synthesis of Results

  • Chapter
Fluxes of Carbon, Water and Energy of European Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 163))

Abstract

The terrestrial sink for carbon is estimated to be of the order of 2±1 Gt C — y-1 (IPCC 2000) However the accumulation of C02 in the atmosphere as documented by atmospheric stations around the globe for the past 40 years can vary by a factor of two from one year to the next, which is equivalent to several Gt C per year. Such changes reflect interannual shifts in the carbon uptake of land and oceans of the same magnitude as the average uptake itself. Fossil fuel emissions changes tend to be smooth in time: year-to-year variations are less than 4% of the total. Both ocean data and global ocean carbon models suggest that the air-sea carbon fluxes are rather stable. The land biosphere may thus explain most of the observed C02 interannual growth rate variation. Several studies, utilizing different techniques, have shown that, in the northern hemisphere, the terrestrial biosphere is currently absorbing carbon (Dixon et al. 1994; Myneni et al. 1997). Most, if not all, of these methods depend on indirect estimates of the carbon fluxes, like isotopic analysis and inversion methods from C02 concentrations measurements (Ciais et al. 1995), remote sensing (Myneni et al. 1997), growth trend analysis (Dixon et al. 1994; Kauppi et al. 1992), and modeling. All these methods provide the necessary global and continental scale perspective for carbon balance calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JM (1992) Responses of soils to climate change. Adv Ecol Res 22:163–210

    Article  CAS  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü et al (2000) Estimates of the Annual Net Carbon and Water Exchange of Forests: the EUROFLUX Methodology Adv. Ecol. Research, 30:113–175

    Article  CAS  Google Scholar 

  • Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340

    Article  Google Scholar 

  • Baldocchi DD, Valentini R, Running S, Oechel WC, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biol 2:159–167

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1998) Drought reduces root respiration in sugar maple forests. Ecol Appl 8:771–778

    Article  Google Scholar 

  • Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperatures in high latitudes. Bull Am Meteorol Soc 74:33–47

    Article  Google Scholar 

  • Chen WJ, Black TA, Yang PC, Barr AG et al (1999). Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biol 1:41–53

    Article  Google Scholar 

  • Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large Northern hemisphere terrestrial C02 sink indicated by 13C/12C ratio of atmospheric C02. Science 269:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Dixon RKJ, Srown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994a) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Srmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  PubMed  CAS  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wosfy WC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and critical evaluation of accuracy. Global Change Biol 2:169–181

    Article  Google Scholar 

  • Goulden ML, Wofly SC, Harden JW, Trumbore SE et al (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    Article  PubMed  CAS  Google Scholar 

  • Hanson PJ, Wullschleger SD, Bohlmann SA, Todd DE (1993) Seasonal and topographic patterns of forest flora C02 efflux from an upland oak forest. Tree Physiol 13:1–15

    Article  PubMed  Google Scholar 

  • IGBP Terrestrial Carbon Working Group (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280:1393–1394

    Article  Google Scholar 

  • IPCC (2000) Land use, land-use change, and forestry; Special report. Cambridge University press, 377 pp

    Google Scholar 

  • Kauppi PE, Mielikäinen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum MU (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 6:753–760

    Article  Google Scholar 

  • Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol 5:169–182

    Article  Google Scholar 

  • Lindroth A, Grelle A, Morén A-S (1998) Long-term measurements of boreal forest. Global Change Biol 4:443–450

    Article  Google Scholar 

  • Moncrieff JB, Malhi Y, Leuning R (1996) The propagation of errors in long-term measurements of land atmosphere fluxes of carbon and water. Global Change Biol 2:231–240

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Nabuurs GJ, Pavinen R, Sikkema R, Mohren GMJ (1997) The role of European forests in the global carbon cycle-a review. Biomass Bioenergy 13:345–358

    Article  CAS  Google Scholar 

  • Oechel WC et al (1993) Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–523

    Article  Google Scholar 

  • Running SW (1998) A blueprint for improved global change monitoring of the terrestrial biosphere. Earth Observer 10:8–12

    Google Scholar 

  • Running SW, Baldocchi DD, Turner D, Gower ST, Bakwin P, Hibbard K (1999) A global terrestrial monitoring network, scaling tower fluxes with ecosystem modeling and EOS satellite data. Remote Sensing of the Environment. 70:108–127

    Article  Google Scholar 

  • Schlenter RE, Van Cleve K (1985) Relationship between C02 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can J For Res 15:97–106

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, pp 161–165

    Google Scholar 

  • Schulze ED, Heimann M (1998) Carbon and water exchange of terrestrial systems. In: Galloway J, Melillo J (eds) Asian change in the context of global change. IGBP Book series. Cambridge Univ Press, Cambridge, pp 145–161

    Google Scholar 

  • Scott Denning A, Fung IY, Randall D (1995) Latitudinal gradient of atmospheric C02 due to seasonal exchange with the land biota. Nature 376:240–243

    Article  Google Scholar 

  • Valentini R; Matteucci G; Dolman AJ; Schulze ED et al (2000). Respiration as the main determinant of carbon balance in European forests. Nature 404,861–865

    Article  PubMed  CAS  Google Scholar 

  • Villar R, Held AA, Merino J (1994) Dark leaf respiration in light and darkness of an evergreen and a deciduous plant species. Plant Physiol 107:421–427

    Google Scholar 

  • Vogt KA, Vogt DJ, Brown S, Tilley JP et al (1995) Dynamics of forest floor and soil organic matter accumulation in boreal, temperate, and tropical forests. In: Lai R, Kimble J, Levine E, Stewart BA (eds) Soil management and greenhouse effect. CRC Press, Boca Raton, pp 159–178

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valentini, R., Matteucci, G., Dolman, A.J., Schulze, ED., Jarvis, P.G. (2003). The Carbon Sink Strength of Forests in Europe: a Synthesis of Results. In: Valentini, R. (eds) Fluxes of Carbon, Water and Energy of European Forests. Ecological Studies, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05171-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05171-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07848-4

  • Online ISBN: 978-3-662-05171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics