Skip to main content

Shock and Thermal Waves Emanating from a Sonoluminescing Gas Bubble

  • Chapter
  • 171 Accesses

Abstract

The generation and propagation of the shock pulse from a sonoluminescing gas bubble whose wall acceleration reaches 1011 g near the collapse is considered by using the bubble wall motion developed by Keller and Miksis in conjunction with the analytical solutions for the gas inside bubble and the Kirkwood-Bethe hypothesis for the outgoing wave. The propagation of the pressure wave inside the bubble, where there are inhomogeneities of density, pressure and temperature induced by the rapid bubble collapse, is also treated. The propagation of a solition-like heat wave which is generated by “thermal spike” due to the rapid increase and subsequent decrease in the bubble wall acceleration is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, B.P., Putterman, S.J.: “Observation of synchronous picosecond sono-luminescence”, Nature 353, 318–320 (1991)

    Article  ADS  Google Scholar 

  2. Barber, B.P., Wu, C.C., Löfstedt, R., Roberts, P.H., Putterman, S.J.: “Sensitivity of sonoluminescence to experimental parameter”, Phys. Rev. Lett. 72, 1380–1383 (1994)

    Article  ADS  Google Scholar 

  3. Blackstock, D.T.: “Nonlinear Acoustics with Application to Underwater Sound”, In Lecture Notes for Summer Graduate Course in Ocean Acoustics ( The Cathoric University of America, Washington D.C., 1974 )

    Google Scholar 

  4. Bernstein, L.S., Zakin, M.R.: “Confined electron model for single bubble sono-luminescence”, J. Phys. Chem. 99, 14619–14627 (1995)

    Article  Google Scholar 

  5. Boulos, M.I., Fanchais, P., Pfender, E.: Thermal Plasmas Vol. 1 ( Plenum, New York, 1994 )

    Google Scholar 

  6. Chester, M.: “Second sounds in solids”, Phys. Rev. 131, 2013–2015 (1963)

    Article  Google Scholar 

  7. Davidson, R.C.: Methods in Nonlinear Plasma Theory ( Academic Press, New York, 1972 )

    Google Scholar 

  8. Delgadino, G.A., Bonetto, F.J.: “Velocity interferometry used to measure the expansion and compression phase of a sonoluminescing bubble”, Phys. Rev. E 57, 4170–4185 (1997)

    Google Scholar 

  9. Gaitan, D.F.: An experimental investigation of acoustic cavitation in a gaseous liquid, Ph. D. Thesis, Universty of Mississippi (1990)

    Google Scholar 

  10. Gaitan, D.F., Holt, R.G.: “Experimental observations of bubble response and light intensity near the threshold for single-bubble sonoluminescence in an air-water system”, Phys. Rev. E. 59, 5495–5502 (1999)

    Article  ADS  Google Scholar 

  11. Greenspan, H.P., Nadim, A.: “On sonoluminescence of an oscillating gas bubble”, Phys. Fluids A 5, 1065–1067 (1993)

    Article  ADS  MATH  Google Scholar 

  12. Hilgenfeldt, S., Brenner, M.P., Grossmann, S., Lohse, D.: “Analysis of Rayleigh—Plesset dynamics for a sonoluminescing gas bubble”, J. Fluid Mech. 365, 171–204 (1998)

    Article  ADS  MATH  Google Scholar 

  13. Hiller, R., Putterman, S.J., Barber, B.P.: “Spectrum of synchronous picosecond sonoluminescence”, Phys. Rev. Lett. 69, 1182–1184 (1992)

    Article  ADS  Google Scholar 

  14. Hiller, R., Weninger, K., Putterman, S.J., Barber, B.P.: “Effect of noble gas doping in single-bubble sonoluminescence”, Science 265, 248–250 (1994)

    Article  ADS  Google Scholar 

  15. Hirschfelder, J.D., Curtis, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids ( John Wiley, New York, 1954 )

    MATH  Google Scholar 

  16. Holzfuss, J. Ruggeberg, M., Billo, A.: “Shock wave emissions of a sonoluminescing bubble”, Phys. Rev. Lett. 81, 5434–5437 (1998)

    Article  ADS  Google Scholar 

  17. Jeon, J., Yang, I., Karng, S., Kwak, H.: “Radius measurement of a sonoluminescing gas bubble”, Jpn., J. Appl. Phys. 39, 1124–1127 (2000)

    Article  Google Scholar 

  18. Jeon, J., Yang, I., Na, J., Kwak, H.: “Radiation mechanism for single-bubble sonoluminescence”, J. Phys. Soc. Jpn. 69, 112–119 (2000)

    Article  ADS  Google Scholar 

  19. Jun, J., Kwak, H.: “Gravitational collapse of Newtonian stars”, Int. J. Mod. Phys. D 9, 35–42 (2000)

    ADS  Google Scholar 

  20. Keller, J.B., Miksis, M.: “Bubble oscillations of large amplitude”, J. Acoust. Soc. Am. 68, 628–633 (1980)

    Article  ADS  MATH  Google Scholar 

  21. Knapp, R.T., Daily, J.W., Hammit, F.G.: Cavitation ( McGraw-Hill, New York, 1970 )

    Google Scholar 

  22. Kondic, L., Gersten, J.I., Yuan, C.: “Theoretical studies of sonoluminescence radiation: radiative transfer and parametric dependence”, Phys. Rev. E 52, 4976–4990 (1995)

    Google Scholar 

  23. Kwak, H., Kim, Y.W.: “Homogeneous nucleation and macroscopic growth of a gas bubble in organic solutions”, Int. J. Heat Mass Trasfer 41, 757–767 (1998)

    Article  MATH  Google Scholar 

  24. Kwak, H., Lee, J., Karng, S.: “Bubble dynamics for single bubble sonoluminescence”, J. Phys. Soc. Jpn. 70, 2909–2917 (2001)

    Article  ADS  Google Scholar 

  25. Kwak, H., Lee, J., Karng, S.: “Pressure wave propagation inside a sonoluminescing gas bubble”, J. Phys. Soc. Jpn. 68, 705–708 (1999)

    Article  ADS  Google Scholar 

  26. Kwak, H., Oh, S., Park, C.: “Bubble dynamics of the evolving bubble formed from the droplet at the superheat limit”, Int. J. Heat Mass Transfer 38, 1709–1718 (1995)

    MATH  Google Scholar 

  27. Kwak, H., Yang, H.: “An aspect of sonoluminescence from hydrodynamics theory”, J. Phys. Soc. Jpn. 64, 1980–1992 (1995)

    Article  ADS  Google Scholar 

  28. Kwak, H., Na, J.: “Hydrodynamic solutions for a sonoluminescing gas bubble”, Phys. Rev. Lett. 77, 4454–4457 (1996)

    Article  ADS  Google Scholar 

  29. Kwak, H., Na, J.: “Physical Processes for single-bubble sonoluminescence”, Phys. Soc. Jpn. 66, 3074–3083 (1997)

    ADS  Google Scholar 

  30. Lee, Y., Karng, S., Jeon, J., Kwak, H.: “Shock pulse from a sonoluminescing gas bubble”, J. Phys. Soc. Jpn. 66, 2537–2540 (1997)

    ADS  Google Scholar 

  31. Löfstedt, R., Weninger, K., Putterman, S J, Barber, B.P.: “Sonoluminescing bubbles and mass diffusion”, Phys. Rev. E 51, 4400–4410 (1995)

    Article  ADS  Google Scholar 

  32. Matula, T.J., Hallaj, I.M., Cleveland, R.O., Crum, L.A., Moss, W.C., Roy, R.A.: “The acoustic emission from single-bubble sonoluminescence”, J. Acoust. Soc. Am. 103, 1377–1382 (1998)

    Article  ADS  Google Scholar 

  33. Moran, M.J., Sweider, D.: “Measurements of sonoluminescence temporal pulse shape”, Phys. Rev. Lett. 80, 4987–4990 (1998)

    Article  ADS  Google Scholar 

  34. Moss, W.C., Clarke, D.B., White, J.W., Young, D.A.: “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence”, Phys. Fluids 6, 2979–2985 (1994)

    Article  ADS  Google Scholar 

  35. Özisik, M.N., Tzou, D.Y.: “On the Wave Theory in Heat Conduction”, In Fundamental Issues in Small-Scale Heat Transfer, Heat Transfer Division, Vol. 227, ed. by Y. Bayazitoglu and G.P. Peterson (ASME 1992 ) pp. 13–27

    Google Scholar 

  36. Panton, R.P.: Incompressible Flows ( Wiley, New York, 1996 )

    Google Scholar 

  37. Patanka, S.V.: Numerical Heat Transfer and Fluid Flow ( McGraw-Hill, New York, 1980 )

    Google Scholar 

  38. Ryu, J.C., Kwak, H.: “Bifurcation Phenomena for the Damped Bubble Oscillations in Periodically Driven Pressure Fields”, In Biforcation Phenomena and Chaos in Thermal Convection, Heat Transfer Division, Vol. 214, ed. by H.H. Bau, L.A. Bertran, S.A. Korpela (ASME 1992 ) pp. 1–8

    Google Scholar 

  39. Suslick, K.S., Hammerton, D.A., Cline, R.E.: “The sonochemical hot spot”, J. Am. Chem. Soc. 108, 5641–5642 (1986)

    Article  Google Scholar 

  40. Theofanous, T., Biasi, L., Isbin, H.S.: “A theoretical study of bubble growth in constant and time-dependent pressure fields”, Chem. Eng. Sci. 24, 885–897 (1969)

    Article  Google Scholar 

  41. Vuong, V.Q., Szeri, A.J.: “Sonoluminescence and diffusive transport”, Phys. Fluids 8, 2354–2364 (1996)

    Article  ADS  MATH  Google Scholar 

  42. Weninger, K.R., Barber, B.P., Puttermann, S.J.: “Pulsed Mie scattering measurements of the collapse of a sonoluminescing bubble”, Phys. Rev. Lett. 78, 1799–1802 (1997)

    Article  ADS  Google Scholar 

  43. Wu, C.C., Roberts, P.M.: “Shock-wave propagation in a sonoluminescing gas bubble”, Phys. Rev. Lett. 70, 3424–3427 (1993)

    Article  Google Scholar 

  44. Yasui, K.: “Variation of liquid temperature at bubble wall near the sonoluminescence threshold”, J. Phys. Soc. Jpn. 65, 2830–2840 (1996)

    Article  ADS  Google Scholar 

  45. Yasui, K.: “Alternative model of single bubble sonoluminescence”, Phys. Rev.E 56, 6750–6760 (1997)

    Article  ADS  Google Scholar 

  46. Elze, H.T., Kodama T., Rafelski, J.: “Sound of Sonoluminescence”, Phys. Rev.E 57, 4170–4185 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kwak, HY., Lee, YP. (2003). Shock and Thermal Waves Emanating from a Sonoluminescing Gas Bubble. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds) Shock Focussing Effect in Medical Science and Sonoluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05161-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05161-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07636-7

  • Online ISBN: 978-3-662-05161-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics