Skip to main content

Abstract

When driven into violent pulsation by a sufficiently strong source of sound, a bubble of air in water emits light, a phenomenon known as ‘sonoluminescence’. The reasons for this are not yet fully understood. The most popular explanation at this time is the shock-wave theory of sonoluminescence. This supposes that, because the bubble surface moves inwards supersonically with respect to the air in the bubble during the compressive parts of the acoustic cycle, it launches an imploding spherical shock wave that becomes so strong, as it focuses at the center of the bubble, that it ionizes the air, the observed light being emitted from the resulting plasma ball. We discuss here the structure and stability of spherical shocks in ideal and van der Waals gases, paying particular attention to similarity shocks of the Guderley type and their relevance to sonoluminescence. We discuss the status of the shock-wave theory of sonoluminescence and alternative explanations. We pose a number of theoretical challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frenzel, H., Schultes, H.: Z. Phys. Chem. B 27, 421–424 (1934)

    Google Scholar 

  2. Barber, B.P., Hiller, R.A., Löfstedt, R., Putterman, S.J., Weninger, K.R.: Phy. Rep. 281, 66–143 (1997)

    Article  ADS  Google Scholar 

  3. Hilgenfeldt, S., Brenner, M.P., Grossman, S., Lohse, D.: J. Fluid Mech. 365, 171–204 (1998)

    Article  ADS  MATH  Google Scholar 

  4. Cheeke, J.D.N.: Canad. J. Phys. 75, 77–96 (1997)

    ADS  Google Scholar 

  5. Löfstedt, R., Putterman, S.: J. Acoust. Soc. Am. 90, 2027–2033 (1991)

    Article  ADS  Google Scholar 

  6. Roberts P.H., Wu, C.C.: Theoret. Comput. Fluid Dynam. 10, 357–372 (1998)

    Article  ADS  MATH  Google Scholar 

  7. Weninger, K.R., Barber, B.P., Putterman, S.J.: Phys. Rev. Lett. 78, 1799–1802 (1997)

    Article  ADS  Google Scholar 

  8. Trilling, L.: J. Appl. Phys. 23, 14–17 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  9. Jarman, P.: J. Acoust. Soc. Am. 32, 1459–1462 (1960)

    Article  ADS  Google Scholar 

  10. Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70, 3424–3427 (1993)

    Article  ADS  Google Scholar 

  11. Wu, C.C., Roberts, P.H.: Proc. R. Soc. Lond. A 445, 323–349 (1994)

    Article  ADS  Google Scholar 

  12. Patel, N.H., Ranga Rao, M.P.: J. Eng. Math. 30, 683–692 (1996)

    Article  MATH  Google Scholar 

  13. Barber, B.P., Weninger, K., Löfstedt, R., Putterman, S.: Phys. Rev. Lett. 74, 5276–5279 (1995)

    Article  ADS  Google Scholar 

  14. Prosperetti, A.: J. Acoust. Soc. Am. 100, 2677–2678 (1996)

    Article  ADS  Google Scholar 

  15. Roberts, P.H., Wu, C.C.: Phys. Lett. A 213, 59–64 (1996)

    Article  ADS  Google Scholar 

  16. Wu, C.C., Roberts, P.H.: Quart. J. Mech. Appl. Math. 49, 501–543 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Higgins, M.S.L.: J. Acoust. Soc. Am. 100, 2678 (1996)

    Article  Google Scholar 

  18. Putterman, S.: Phys. World 38–42 (May 1998)

    Google Scholar 

  19. Moss, W.C., Clarke, D.B., White, J.W., Young, D.A.: Phys. Fluids 6, 2979–2985 (1994)

    Article  ADS  Google Scholar 

  20. Moss, W.C., Clarke, D.B., White, J.W., Young, D.A.: Phys. Lett. A 211, 69–74 (1996)

    Article  ADS  Google Scholar 

  21. Moss, W.C., Clarke, D.B., Young, D.A.: Science 276, 1398–1401 (1997)

    Article  Google Scholar 

  22. Kondie, L., Gersten, J.I., Yuan, C.: Phys. Rev. E 52, 4976–4990 (1995)

    Article  ADS  Google Scholar 

  23. Kondié, L., Yuan, C., Chan, C.K.: Phys. Rev. E 57, R32 — R35 (1998)

    Article  ADS  Google Scholar 

  24. Weninger, K., Hiller, R., Barber, B.P., Lacoste, D., Putterman, S.J.: J. Phys. Chem. 99, 14195–14197 (1995)

    Article  Google Scholar 

  25. Guderley, G.: Luftfahrtforsch. 19, 302–312 (1942)

    MathSciNet  Google Scholar 

  26. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. ( Pergamon, Oxford, 1987 )

    MATH  Google Scholar 

  27. Chester, W.C.: Phil. Mag. 45, 1293–1301 (1954)

    MathSciNet  MATH  Google Scholar 

  28. Chisnell, R.F.: J. Fluid Mech. 2, 286–298 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Whitham G.B.: J. Fluid Mech. 2, 145–171 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Yousaf, M.: J. Fluid Mech. 66, 577–591 (1974)

    Article  ADS  MATH  Google Scholar 

  31. Gardner, J.H., Book, D.L., Bernstein, I.B.: J. Fluid Mech. 114, 41–58 (1982)

    Article  ADS  MATH  Google Scholar 

  32. US patent No. 5659173: Converting acoustic energy into other useful energy forms (1997)

    Google Scholar 

  33. Greenspan, H.P., Nadim, A.: Phys. Fluids A 5, 1065–1067 (1993)

    Article  ADS  MATH  Google Scholar 

  34. Barber, B.P., Wu, C.C., Löfstedt, R., Roberts, P.H., Putterman, S.J.: Phys. Rev. Lett. 72, 1380–1383 (1994)

    Article  ADS  Google Scholar 

  35. Frommhold, L., Meyer, W.: Collision-induced emission and sonoluminescence. (13th Int. Conf. on Spectral Line Shapes, Firenze, Italy, 16–21 June 1996). AIP Conf. Proc. (no. 386 ): 471–484 (1997)

    Google Scholar 

  36. Wu, C.C., Roberts, P.H.: Phys. Lett. A 250 131–136 (1998)

    Article  ADS  Google Scholar 

  37. Richtmyer, R.D.: Comm. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  38. Andronov, V., Bakhrakh, S.M., Meshkov, E.E., Mokhov, V.N., Nikiforov, V.V., Pevnitskii, A.V., Tolshmyakov, A.I.: Soviet Phys. JETP 44, 424–427 (1976)

    ADS  Google Scholar 

  39. Zhang, Q., Graham, M.J.: Phys. Rev. Lett. 79, 2674–2677 (1997)

    Article  ADS  Google Scholar 

  40. Mikaelian, K.O.: Phys. Rev. Lett. 80, 508–511 (1998)

    Article  ADS  Google Scholar 

  41. Young, D.L.: Physica 12D, 32–44 (1984)

    Google Scholar 

  42. Whitham, G.B.: Linear and Nonlinear Waves ( Wiley, New York, 1974 )

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roberts, P.H., Wu, C.C. (2003). The Shock-Wave Theory of Sonoluminescence. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds) Shock Focussing Effect in Medical Science and Sonoluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05161-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05161-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07636-7

  • Online ISBN: 978-3-662-05161-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics