Nonlinear Spectroscopy

  • Wolfgang Demtröder
Part of the Advanced Texts in Physics book series (ADTP)


One of the essential advantages that single-mode lasers can offer for high-resolution spectroscopy is the possibility of overcoming the limitation set by Doppler broadening. Several techniques have been developed that are based on selective saturation of atomic or molecular transitions by sufficiently intense lasers.


Probe Beam Pump Beam Pump Wave Lamb Shift Molecular Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    W.R. Bennet, Jr.: Hole-burning effects in a He-Ne-optical maser. Phys. Rev. 126, 580 (1962)ADSCrossRefGoogle Scholar
  2. 7.2
    V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977)CrossRefGoogle Scholar
  3. 7.3
    S. Mukamel: Principles of nonlinear optical spectroscopy (Oxford Univ. Press, Oxford 1999)Google Scholar
  4. 7.4
    M.D. Levenson: Introduction to Nonlinear Spectroscopy (Academic, New York 1982)Google Scholar
  5. 7.5
    W.E. Lamb: Theory of an optical maser. Phys. Rev. A 134, 1429 (1964)ADSGoogle Scholar
  6. 7.6
    H. Gerhardt, E. Matthias, F. Schneider, A. Timmermann: Isotope shifts and hy-perfine structure of the 6s – 7p-transitions in the cesium isotopes 133, 135 and 137. Z. Phys. A 288, 327 (1978)ADSCrossRefGoogle Scholar
  7. 7.7
    See, for instance: S.L. Chin: Fundamentals of Laser Optoelectronics (World Scientific, Singapore 1989) pp.281 ff.Google Scholar
  8. 7.8
    M.S. Sorem, A.L. Schawlow: Saturation spectroscopy in molecular iodine by intermodulated fluorescence. Opt. Commun. 5, 148 (1972)ADSCrossRefGoogle Scholar
  9. 7.9
    M.D. Levenson, A.L. Shawlow: Hyperfine interactions in molecular iodine. Phys. Rev. A 6, 10 (1972)ADSCrossRefGoogle Scholar
  10. 7.10
    H.J. Foth: Sättigungsspektroskopie an Molekülen. Diplom thesis, University of Kaiserslautern, Germany (1976)Google Scholar
  11. 7.11
    R.S. Lowe, H. Gerhardt, W. Dillenschneider, R.F. Curl Jr., F.K. Tittel: Intermod-ulated fluorescence spectroscopy of BO2 using a stabilized dye laser. J. Chem. Phys. 70, 42 (1979)ADSCrossRefGoogle Scholar
  12. 7.12
    A.S. Cheung, R.C. Hansen, A.J. Nerer: Laser spectroscopy of VO: analysis of the rotational and hyperfine structure. J. Mol. Spectrosc. 91, 165 (1982)ADSCrossRefGoogle Scholar
  13. 7.13
    L.A. Bloomfield, B. Couillard, Ph. Dabkiewicz, H. Gerhardt, T.W. Hänsch: Hyperfine structure of the 23S - 53P transition in 3He by high resolution UV laser spectroscopy. Opt. Commun. 42, 247 (1982)ADSCrossRefGoogle Scholar
  14. 7.14
    Ch. Hertzler, H.J. Foth: Sub-Doppler polarization spectra of He, N2 and Ar+ recorded in discharges. Chem. Phys. Lett. 166, 551 (1990)ADSCrossRefGoogle Scholar
  15. 7.15
    H.J. Foth, F. Spieweck. Hyperfine structure of the R(98), (58–1)-line of I2 at λ = 514.5nm. Chem. Phys. Lett. 65, 347 (1979)ADSCrossRefGoogle Scholar
  16. 7.16
    W.G. Schweitzer, E.G. Kessler, R.D. Deslattes, H.P. Layer, J.R. Whetstone: Description, performance and wavelength of iodine stabilised lasers. Appl. Opt. 12, 2927 (1973)ADSCrossRefGoogle Scholar
  17. 7.17
    R.L. Barger, J.B. West, T.C. English: Frequency stabilization of a CW dye laser. Appl. Phys. Lett. 27, 31 (1975)ADSCrossRefGoogle Scholar
  18. 7.18
    C. Salomon, D. Hills, J.L. Hall: Laser stabilization at the millihertz level. J. Opt. Soc. B 5, 1576 (1988)ADSCrossRefGoogle Scholar
  19. 7.19
    V. Bernard, et al.: CO2-Laser stabilization to 0.1 Hz using external electro-optic modulation. IEEE J. Quantum Electron. 33, 1288 (1997)ADSCrossRefGoogle Scholar
  20. 7.20
    J.C. Hall, J.A. Magyar: ‘High resolution saturation absorption studies of methane and some methyl-halides’. In: High-Resolution Laser Spectroscopy, ed. by K. Shimoda, Topics Appl. Phys., Vol. 13 (Springer, Berlin, Heidelberg 1976) p. 137CrossRefGoogle Scholar
  21. 7.21
    J.L. Hall: ‘Sub-Doppler spectroscopy, methane hyperfine spectroscopy and the ultimate resolution limit’. In: Colloq. Int. due CNRS, No. 217 (Edit. due CNRS, 15 quai Anatole France, Paris 1974) p. 105Google Scholar
  22. 7.22
    B. Bobin, C.J. Bordé, J. Bordé, C. Bréant: Vibration-rotation molecular constants for the ground and (v 3 = 1) states of SF6 from saturated absorption spectroscopy. J. Mol. Spectrosc. 121, 91 (1987)ADSCrossRefGoogle Scholar
  23. 7.23
    M. de Labachelerie, K. Nakagawa, M. Ohtsu: Ultranarrow 13C2H2 saturated absorption lines at 1.5 µm. Opt. Lett. 19, 840 (1994)ADSCrossRefGoogle Scholar
  24. 7.24
    C. Wieman, T.W. Hänsch: Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170 (1976)ADSCrossRefGoogle Scholar
  25. 7.25
    R.E. Teets, F.V. Kowalski, W.T. Hill, N. Carlson, T.W. Hänsch: ‘Laser polarization spectroscopy’. In: Advances in Laser Spectroscopy, SPIE Proc. 113, 80 (1977)Google Scholar
  26. 7.26
    M.E. Rose: Elementary Theory of Angular Momentum (Wiley, New York 1957)zbMATHGoogle Scholar
  27. 7.27
    R.N. Zare: Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York 1988)Google Scholar
  28. 7.28
    V. Stert, R. Fischer: Doppler-free polarization spectroscopy using linear polarized light. Appl. Phys. 17, 151 (1978)ADSCrossRefGoogle Scholar
  29. 7.29
    H. Gerhardt, T. Huhle, J. Neukammer, P.J. West: High resolution polarization spectroscopy of the 557 nm transition of KrI. Opt. Commun. 26, 58 (1978)ADSCrossRefGoogle Scholar
  30. 7.30
    M. Raab, G. Höning, R. Castell, W. Demtröder: Doppler-free polarization spectroscopy of the Cs2 molecule at λ = 6270 Å. Chem. Phys. Lett. 66, 307 (1979)ADSCrossRefGoogle Scholar
  31. 7.31
    M. Raab, G. Höning, W. Demtröder, C.R. Vidal: High resolution laser spectroscopy of Cs2. J. Chem. Phys. 76, 4370 (1982)ADSCrossRefGoogle Scholar
  32. 7.32
    W. Ernst: Doppler-free polarization spectroscopy of diatomic molecules in flame reactions. Opt. Commun. 44, 159 (1983)ADSCrossRefGoogle Scholar
  33. 7.33
    M. Francesconi, L. Gianfrani, M. Inguscio, P. Minutolo, A. Sasso: A new approach to impedance atomic spectroscopy. Appl. Phys. B 51, 87 (1990)ADSCrossRefGoogle Scholar
  34. 7.34
    L. Gianfrani, A. Sasso, G.M. Tino, F. Marin: Polarization spectroscopy of atomic oxygen by dye and semiconductor diode lasers. Il Nuovo Cimento D10, 941 (1988)ADSGoogle Scholar
  35. 7.35
    M. Göppert-Mayer: Über Elementarakte mit zwei Quantensprüngen. Ann. Physik 9, 273 (1931)CrossRefGoogle Scholar
  36. 7.36
    W. Kaiser, C.G. Garret: Two-photon excitation in LLCA F2: MATH. Phys. Rev. Lett. 7, 229 (1961)ADSCrossRefGoogle Scholar
  37. 7.37
    J.J. Hopfield, J.M. Worlock, K. Park: Two-quantum absorption spectrum of KI. Phys. Rev. Lett. 11, 414 (1963)ADSCrossRefGoogle Scholar
  38. 7.38
    P. Bräunlich: ‘Multiphoton spectroscopy’. In: Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978)Google Scholar
  39. 7.39
    J.M. Worlock: Two-photon spectroscopy’. In: Laser Handbook, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972)Google Scholar
  40. 7.40
    B. Dick, G. Hohlneicher: Two-photon spectroscopy of dipole-forbidden transitions. Theor. Chim. Acta 53, 221 (1979);CrossRefGoogle Scholar
  41. 7.40a
    B. Dick, G. Hohlneicher: J. Chem. Phys. 70, 5427 (1979)ADSCrossRefGoogle Scholar
  42. 7.41
    J.B. Halpern, H. Zacharias, R. Wallenstein: Rotational line strengths in two- and three-photon transitions in diatomic molecules. J. Mol. Spectrosc. 79, 1 (1980)ADSCrossRefGoogle Scholar
  43. 7.42
    K.D. Bonin, T.J. McIlrath: Two-photon electric dipole selection rules. J. Opt. Soc. Am. B 1, 52 (1984)ADSCrossRefGoogle Scholar
  44. 7.43
    G. Grynberg, B. Cagnac: Doppler-free multiphoton spectroscopy. Rep. Progr. Phys. 40, 791 (1977)ADSCrossRefGoogle Scholar
  45. 7.44
    F. Biraben, B. Cagnac, G. Grynberg: Experimental evidence of two- photon transition without Doppler broadening. Phys. Rev. Lett. 32, 643 (1974)ADSCrossRefGoogle Scholar
  46. 7.45
    G. Grynberg, B. Cagnbac, F. Biraben: ‘Multiphoton resonant processes in atoms’. In: Coherent Nonlinear Optics, ed. by M.S. Feld, V.S. Letokhov, Topics Curr. Phys., Vol.21 (Springer, Berlin, Heidelberg 1980)CrossRefGoogle Scholar
  47. 7.46
    T.W. Hänsch, K. Harvey, G. Meisel, A.L. Shawlow: Two-photon spectroscopy of Na 3s-4d without Doppler-broadening using CW dye laser. Opt. Commun. 11, 50 (1974)ADSCrossRefGoogle Scholar
  48. 7.47
    M.D. Levenson, N. Bloembergen: Observation of two-photon absorption without Doppler-broadening on the 3s – 5s transition in sodium vapor. Phys. Rev. Lett. 32, 645 (1974)ADSCrossRefGoogle Scholar
  49. 7.48
    A. Timmermann: High resolution two-photon spectroscopy of the 6p 23P0 - 7p 3P0 transition in stable lead isotopes. Z. Physik A 286, 93 (1980)ADSCrossRefGoogle Scholar
  50. 7.49
    S.A. Lee, J. Helmcke, J.L. Hall, P. Stoicheff: Doppler-free two-photon transitions to Rydberg levels. Opt. Lett. 3, 141 (1978)ADSCrossRefGoogle Scholar
  51. 7.50
    R. Beigang, K. Lücke, A. Timmermann: Singlet-Triplet mixing in 4s and Rydberg states of Ca. Phys. Rev. A 27, 587 (1983)ADSCrossRefGoogle Scholar
  52. 7.51
    S.V. Filseth, R. Wallenstein, H. Zacharias: Two-photon excitation of CO (A1∏) and N2 (a 1g). Opt. Commun. 23, 231 (1977)ADSCrossRefGoogle Scholar
  53. 7.52
    E. Riedle, H.J. Neusser, E.W. Schlag: Electronic spectra of polyatomic molecules with resolved individual rotational transitions: benzene. J. Chem. Phys. 75, 4231 (1981)ADSCrossRefGoogle Scholar
  54. 7.53
    H. Sieber, E. Riedle, J.H. Neusser: Intensity distribution in rotational line spectra I: Experimental results for Doppler-free S1 ← S0 transitions in benzene. J. Chem. Phys. 89, 4620 (1988);ADSCrossRefGoogle Scholar
  55. 7.53a
    E. Riedle: Doppler-freie Zweiphotonen-Spektroskopie an Benzol. Habilitation thesis, Inst. Physikalische Chemie, TU München, Germany (1990)Google Scholar
  56. 7.54
    E. Riedle, H.J. Neusser: Homogeneous linewidths of single rotational lines in the “channel three” region of C6H6. J. Chem. Phys. 80, 4686 (1984)ADSCrossRefGoogle Scholar
  57. 7.55
    U. Schubert, E. Riedle, J.H. Neusser: Time evolution of individual rotational states after pulsed Doppler-free two-photon excitation. J. Chem. Phys. 84, 5326 and 84, 6182 (1986)ADSCrossRefGoogle Scholar
  58. 7.56
    W. Bischel, P.J. Kelley, Ch.K. Rhodes: High-resolution Doppler-free two-photon spectroscopic studies of molecules. Phys. Rev. A 13, 1817 and 13, 1829 (1976)ADSCrossRefGoogle Scholar
  59. 7.57
    R. Guccione-Gush, H.P Gush, R. Schieder, K. Yamada, C. Winnewisser: Doppler-free two-photon absorption of NH3 using a CO2 and a diode laser. Phys. Rev. A 23, 2740 (1981)ADSCrossRefGoogle Scholar
  60. 7.58
    G.F. Bassani, M. Inguscio, T.W. Hänsch (Eds.): The Hydrogen Atom (Springer, Berlin, Heidelberg 1989)Google Scholar
  61. 7.59
    M. Weitz, F. Schmidt-Kaler, T.W. Hänsch: Precise optical Lamb-shift measurements in atomic hydrogen. Phys. Rev. Lett. 68, 1120 (1992);ADSCrossRefGoogle Scholar
  62. 7.59a
    S.A. Lee, R. Wallenstein, T.W. Hänsch: Hydrogen 1S-2S-isotope shift and 1S Lamb shift measured by laser spectroscopy. Phys. Rev. Lett. 35, 1262 (1975)ADSCrossRefGoogle Scholar
  63. 7.60
    J.R.M. Barr, J.M. Girkin, J.M. Tolchard, A.I. Ferguson: Interferometric measurement of the 1S1/2 – 2S1/2 transition frequency in atomic hydrogen. Phys. Rev. Lett. 56, 580 (1986)ADSCrossRefGoogle Scholar
  64. 7.61
    M. Niering, et al.: Measurement of the hydrogen 1S – 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496 (2000)ADSCrossRefGoogle Scholar
  65. 7.62
    F. Biraben, J.C. Garreau, L. Julien: Determination of the Rydberg constant by Doppler-free two-photon spectroscopy of hydrogen Rydberg states. Europhys. Lett. 2, 925 (1986)ADSCrossRefGoogle Scholar
  66. 7.63
    F.H.M. Faisal, R. Wallenstein, H. Zacharias: Three-photon excitation of xenon and carbon monoxide. Phys. Rev. Lett. 39, 1138 (1977)ADSCrossRefGoogle Scholar
  67. 7.64
    B. Cagnac: ‘Multiphoton high resolution spectroscopy’. In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p. 147Google Scholar
  68. 7.65
    V.I. Lengyel, M.I. Haylak: Role of autoionizing states in multiphoton ionization of complex atoms. Adv. At. Mol. Phys. 27, 245 (1990)ADSCrossRefGoogle Scholar
  69. 7.66
    E.M. Alonso, A.L. Peuriot, V.B. Slezak: CO2-laser-induced multiphoton absorption of CF2Cl2. Appl. Phys. B 40, 39 (1986)ADSCrossRefGoogle Scholar
  70. 7.67
    V.S. Lethokov: Multiphoton and multistep vibrational laser spectroscopy of molecules. Commen. At. Mol. Phys. 8, 39 (1978)Google Scholar
  71. 7.68
    W. Fuss, J. Hartmann: IR absorption of SF6 excited up to the dissociation limit. J. Chem. Phys. 70, 5468 (1979)ADSCrossRefGoogle Scholar
  72. 7.69
    F.V. Kowalski, W.T. Hill, A.L. Schawlow: Saturated-interference spectroscopy. Opt. Lett. 2, 112 (1978)ADSCrossRefGoogle Scholar
  73. 7.70
    R. Schieder: Interferometric nonlinear spectroscopy. Opt. Commun. 26, 113 (1978)ADSCrossRefGoogle Scholar
  74. 7.71
    S. Tolanski: An Introduction to Interferometry (Longman, London 1973)Google Scholar
  75. 7.72
    C. Delsart, J.C. Keller: ‘Doppler-free laser induced dichroism and birefringence’. In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2, (Springer, Berlin, Heidelberg 1976) p. 154Google Scholar
  76. 7.73
    M.D. Levenson, G.L. Eesley: Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy. Appl. Phys. 19, 1 (1979)ADSCrossRefGoogle Scholar
  77. 7.74
    M. Raab, A. Weber: Amplitude-modulated heterodyne polarization spectroscopy. J. Opt. Soc. Am. B 2, 1476 (1985)ADSCrossRefGoogle Scholar
  78. 7.75
    K. Danzmann, K. Grützmacher, B. Wende: Doppler-free two-photon polarization spectroscopy measurement of the Stark-broadened profile of the hydrogen Hα line in a dense plasma. Phys. Rev. Lett. 57, 2151 (1986)ADSCrossRefGoogle Scholar
  79. 7.76
    T.W. Hänsch, A.L. Schawlow, C.W. Series: The spectrum of atomic hydrogen. Sci. Am. 240, 72 (1979)ADSCrossRefGoogle Scholar
  80. 7.77
    R.S. Berry: How good is Niels Bohrs atomic model? Contemp. Phys. 30, 1 (1989)Google Scholar
  81. 7.78
    F. Schmidt-Kaien, D. Leibfried, M. Weitz, T.W. Hänsch: Precision measurement of the isotope shift of the 1S-2S transition of atomic hydrogen and deuterium. Phys. Rev. Lett. 70, 2261 (1993)ADSCrossRefGoogle Scholar
  82. 7.79
    V.S. Butylkin, A.E. Kaplan, Y.G. Khronopulo: Resonant Nonlinear Interaction of Light with Matter (Springer, Berlin, Heidelberg 1987)Google Scholar
  83. 7.80
    J.J.H. Clark, R.E. Hester (Eds.): Advances in Nonlinear Spectroscopy (Wiley, New York 1988)Google Scholar
  84. 7.81
    S.S. Kano: Introduction to Nonlinear Laser Spectroscopy (Academic, New York 1988)Google Scholar
  85. 7.82
    T.W. Hänsch: ‘Nonlinear high-resolution spectroscopy of atoms and molecules’. In: Nonlinear Spectroscopy, Proc. Int. School of Physics “Enrico Fermi” Course LXIV (North-Holland, Amsterdam 1977) p. 17Google Scholar
  86. 7.83
    D.C. Hanna, M.Y. Yunatich, D. Cotter: Nonlinear Optics of Free Atoms and Molecules, Springer Ser. Opt. Sci., Vol. 17 (Springer, Berlin, Heidelberg 1979)CrossRefGoogle Scholar
  87. 7.84
    St. Stenholm: Foundations of Laser Spectroscopy (Wiley, New York 1984)Google Scholar
  88. 7.85
    R. Altkorn, R.Z. Zare: Effects of saturation on laser-induced fluorescence measurements. Ann. Rev. Phys. Chem. 35, 265 (1984)ADSCrossRefGoogle Scholar
  89. 7.86
    B. Cagnac: ‘Laser Doppler-free techniques in spectroscopy’. In: Frontiers of Laser Spectroscopy of Gases, ed. by A.C.P. Alves, J.M. Brown, J.H. Hollas, Nato ASO Series C, Vol. 234, (Kluwer, Dondrost 1988)Google Scholar
  90. 7.87
    S.H. Lin (Ed.): Advances in Multiphoton Processes and Spectroscopy (World Scientific, Singapore 1985–1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations