Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers

  • Wolfgang Demtröder
Part of the Advanced Texts in Physics book series (ADTP)


In the previous chapter we presented the different realizations of tunable lasers; we now discuss their applications in absorption and fluorescence spectroscopy. First we discuss those methods where the spectral resolution is limited by the Doppler width of the molecular absorption lines. This limit can in fact be reached if the laser linewidth is small compared with the Doppler width. In several examples, such as optical pumping or laser-induced fluorescence spectroscopy, multimode lasers may be employed, although in most cases single-mode lasers are superior. In general, however, these lasers may not necessarily be frequency stabilized as long as the frequency jitter is small compared with the absorption linewidth. We compare several detection techniques of molecular absorption with regard to their sensitivity and their feasibility in the different spectral regions. Some examples illustrate the methods to give the reader a feeling of what has been achieved. After the discussion of Doppler-limited spectroscopy, Chaps. 7–10 give an extensive treatment of various techniques which allow sub-Doppler spectroscopy.


Fluorescence Spectroscopy Tunable Laser Excited Molecule Photoacoustic Spectroscopy Doppler Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972);Google Scholar
  2. 6.1a
    P. Griffiths, J.A. de Haset: Fourier Transform Infrared Spectroscopy (Wiley, New York 1986);Google Scholar
  3. 6.1b
    J. Kauppinen, J. Partanen: Fourier Transforms in Spectroscopy (Wiley, New York 2001)zbMATHGoogle Scholar
  4. 6.2
    D.G. Cameron, D.J. Moffat: A generalized approach to derivative spectroscopy. Appl. Spectrosc. 41, 539 (1987);ADSGoogle Scholar
  5. 6.2a
    G. Talsky: Derivative Spectrophotometers (VCH, Weinheim 1994)Google Scholar
  6. 6.3
    G.C. Bjorklund: Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15 (1980)ADSGoogle Scholar
  7. 6.4
    M. Gehrtz, G.C. Bjorklund, E. Whittaker: Quantum-limited laser frequency-modulation spectroscopy. J. Opt. Soc. Am. B 2, 1510 (1985)ADSGoogle Scholar
  8. 6.5
    G.R. Janik, C.B. Carlisle, T.F. Gallagher: Two-tone frequency-modulation spectroscopy. J. Opt. Soc. Am. B 3, 1070 (1986)ADSGoogle Scholar
  9. 6.6
    F.S. Pavone, M. Inguscio: Frequency- and wavelength-modulation spectroscopy: Comparison of experimental methods, using an AlGaAs diode laser. Appl. Phys. B 56, 118 (1993)ADSGoogle Scholar
  10. 6.7
    R. Grosskloss, P. Kersten, W. Demtröder: Sensitive amplitude and phase-modulated absorption spectroscopy with a continuously tunable diode laser. Appl. Phys. B 58, 137 (1994)ADSGoogle Scholar
  11. 6.8
    P.C.D. Hobbs: Ultrasensitive laser measurements without tears. Appl. Opt. 36, 903 (1997)ADSGoogle Scholar
  12. 6.9
    P. Wehrle: A review of recent advances in semiconductor laser gas monitors. Spectrochim. Acta, Part A 54, 197 (1998)ADSGoogle Scholar
  13. 6.10
    J.A. Silver: Frequency modulation spectroscopy for trace species detection. Appl. Opt. 31, 707 (1992)ADSGoogle Scholar
  14. 6.11
    W. Brunner, H. Paul: On the theory of intracavity absorption. Opt. Commun. 12, 252 (1974)ADSGoogle Scholar
  15. 6.12
    K. Tohama: A simple model for intracavity absorption. Opt. Commun. 15, 17 (1975)ADSGoogle Scholar
  16. 6.13
    A. Campargue, F. Stoeckel, M. Chenevier: High sensitivity intracavity laser spectroscopy: applications to the study of overtone transitions in the visible range. Spectrochimica Acta Rev. 13, 69 (1990)Google Scholar
  17. 6.14
    A.A. Kaschanov, A. Charvat, F. Stoeckel: Intracavity laser spectroscopy with vibronic solid state lasers. J. Opt. Soc. Am. B 11, 2412 (1994)ADSGoogle Scholar
  18. 6.15
    V.M. Baev, T. Latz, P.E. Toschek: Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 172 (1999);ADSzbMATHGoogle Scholar
  19. 6.15a
    V.M. Baev: Intracavity spectroscopy with diode lasers. Appl. Phys. B 55, 463 (1992)ADSGoogle Scholar
  20. 6.16
    V.R. Mironenko, VI. Yudson: Quantum noise in intracavity laser spectroscopy. Opt. Commun. 34, 397 (1980);ADSGoogle Scholar
  21. 6.16a
    V.R. Mironenko, VI. Yudson: Sov. Phys. JETP 52, 594 (1980)ADSGoogle Scholar
  22. 6.17
    P.E. Toschek, V.M. Baev: ‘“One is not enough”: Intracavity laser spectroscopy with a multimode laser’. In: Laser Spectroscopy and New Ideas, ed. by W.M. Yen, M.D. Levenson, Springer Ser. Opt. Sci., Vol.54 (Springer, Berlin, Heidelberg 1987)Google Scholar
  23. 6.18
    E.M. Belenov, M.V Danileiko, V.R. Kozuborskii, A.P. Nedavnii, M.T. Shpak: Ultrahigh resolution spectroscopy based on wave competition in a ring laser. Sov. Phys. JETP 44, 40 (1976)ADSGoogle Scholar
  24. 6.19
    E.A. Sviridenko, M.P. Frolov: Possible investigations of absorption line profiles by intracavity laser spectroscopy. Sov. J. Quant. Electron. 7, 576 (1977)ADSGoogle Scholar
  25. 6.20
    T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a CW dye laser to selective extinction. IEEE J. Quantum Electron. 8, 802 (1972)ADSGoogle Scholar
  26. 6.21
    R.N. Zare: Laser separation of isotopes. Sci. Am. 236, 86 (February 1977)Google Scholar
  27. 6.22
    R.G. Bray, W. Henke, S.K. Liu, R.V. Reddy, M.J. Berry: Measurement of highly forbidden optical transitions by intracavity dye laser spectroscopy. Chem. Phys. Lett. 47, 213 (1977)ADSGoogle Scholar
  28. 6.23
    H. Atmanspacher, B. Baldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zane: Cavity-locked ring-down spectroscopy. J. Appl. Phys. 83, 3991 (1998)ADSGoogle Scholar
  29. 6.24
    W. Schrepp, H. Figger, H. Walther: Intracavity spectroscopy with a color-center laser. Lasers and Applications 77 (July 1984)Google Scholar
  30. 6.25
    V.M. Baev, K.J. Boller, A. Weiler, P.E. Toschek: Detection of spectrally narrow light emission by laser intracavity spectroscopy. Opt. Commun. 62, 380 (1987)ADSGoogle Scholar
  31. 6.26
    V.M. Baev, A. Weiler, P.E. Toschek: Ultrasensitive intracavity spectroscopy with multimode lasers. J. Phys. (Paris) 48, C7, 701 (1987)Google Scholar
  32. 6.27
    T.D. Harris: ‘Laser intracavity-enhanced spectroscopy’. In: Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)Google Scholar
  33. 6.28
    E.H. Piepmeier (Ed.): Analytical Applications of Lasers (Wiley, New York 1986)Google Scholar
  34. 6.29
    H. Atmanspacher, H. Scheingraber, C.R. Vidal: Dynamics of laser intracavity absorption. Phys. Rev. A 32, 254 (1985);ADSGoogle Scholar
  35. 6.29a
    H. Atmanspacher, H. Scheingraber, C.R. Vidal: Mode-correlation times and dynamical instabilities in a multimode CW dye laser. Phys. Rev. A 33, 1052 (1986)ADSGoogle Scholar
  36. 6.30
    H. Atmanspacher, H. Scheingraber, V.M. Baev: Stimulated Brillouin scattering and dynamical instabilities in a multimode laser. Phys. Rev. A 35, 142 (1987)ADSGoogle Scholar
  37. 6.31
    P. Zalicki, R.N. Zare: Cavity ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708 (1995)ADSGoogle Scholar
  38. 6.32
    D. Romanini, K.K. Lehmann: Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven and eight stretching quanta. J. Chem. Phys. 99, 6287 (1993)ADSGoogle Scholar
  39. 6.33
    M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S. Harris, R.N. Zare: Optical heterodyne detection in cavity ring-down spectroscopy. Chem. Phys. Lett. 290, 335 (1998)ADSGoogle Scholar
  40. 6.34
    B.A. Baldus, R.N. Zare, et al.: Cavity-locked ringdown spectroscopy. J. Appl. Phys. 83, 3991 (1998)ADSGoogle Scholar
  41. 6.35
    J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally: Cavity-ringdown laser absorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled gold silicides. J. Chem. Phys. 103, 9187 (1995)ADSGoogle Scholar
  42. 6.36
    K.H. Becker, D. Haaks, T. Tartarczyk: Measurements of C2-radicals in flames with a tunable dye lasers. Z. Naturforsch. 29a, 829 (1974)ADSGoogle Scholar
  43. 6.37
    A. O’Keefe: Integrated cavity output analysis of ultraweak absorption. Chem. Phys. Lett. 293, 331 (1998)ADSGoogle Scholar
  44. 6.38
    J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally: Cavity ringdown laser absorption spectroscopy history, development and application to pulsed molecular beams. Chem. Rev. 97, 25 (1997)Google Scholar
  45. 6.39
    G. Berden, R. Peéters, G. Meijer: Cavity ringdown spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chemistry 19, 565 (2000)Google Scholar
  46. 6.40
    WM. Fairbanks, T.W. Hänsch, A.L. Schawlow: Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence. J. Opt. Soc. Am. 65, 199 (1975)ADSGoogle Scholar
  47. 6.41
    H.G. Krämer, V. Beutel, K. Weyers, W. Demtröder: Sub-Doppler laser spectroscopy of silver dimers Ag2 in a supersonic beam. Chem. Phys. Lett. 193, 331 (1992)ADSGoogle Scholar
  48. 6.42
    P.J. Dagdigian, H.W. Cruse, R.N. Zare: Laser fluorescence study of AlO, formed in the reaction Al + O2: Product state distribution, dissociation energy and radiative lifetime. J. Chem. Phys. 62, 1824 (1975)ADSGoogle Scholar
  49. 6.43
    W.E. Moerner, L. Kador: Finding a single molecule in a haystack. Anal. Chem. 61, 1217A (1989);Google Scholar
  50. 6.43a
    W.E. Moerner: Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule. Science 265, 46 (1994)ADSGoogle Scholar
  51. 6.44
    K. Kneipp, S.R. Emory, S. Nie: Single-molecule Raman-spectroscopy: Fact or fiction?. Chimica 53, 35 (1999)Google Scholar
  52. 6.45
    T. Plakbotnik, E.A. Donley, U.R Wild: Single molecule spectroscopy. Ann. Rev. Phys. Chem. 48, 181 (1997)ADSGoogle Scholar
  53. 6.46
    References to the historical development can be found in H.J. Bauer: Son et lumiere or the optoacoustic effect in multilevel systems. J. Chem. Phys. 57, 3130 (1972)ADSGoogle Scholar
  54. 6.47
    Yoh-Han Pao (Ed.): Optoacoustic Spectroscopy and Detection (Academic, New York 1977)Google Scholar
  55. 6.48
    A. Rosencwaig: Photoacoustic and Photoacoustic Spectroscopy (Wiley, New York 1980)Google Scholar
  56. 6.49
    V.P. Zharov, V.S. Letokhov: Laser Optoacoustic Spectroscopy, Springer Ser. Opt. Sci., Vol. 37 (Springer, Berlin, Heidelberg 1986)Google Scholar
  57. 6.50
    M.W. Sigrist (Ed.): Air Monitoring by Spectroscopic Techniques. (Wiley, New York 1994);Google Scholar
  58. 6.50a
    J. Xiu, R. Stroud: Acousto-Optic Devices: Principles, Design and Applications. (Wiley, New York 1992)Google Scholar
  59. 6.51
    P. Hess, J. Pelzl (Eds.): Photoacoustic and Photothermal Phenomena, Springer Ser. Opt. Sci., Vol.58 (Springer, Berlin, Heidelberg 1988)Google Scholar
  60. 6.52
    P. Hess (Ed.): Photoacoustic, Photothermal and Photochemical Processes in Gases, Topics Curr. Phys., Vol.46 (Springer, Berlin, Heidelberg 1989)Google Scholar
  61. 6.53
    J.C. Murphy, J.W. Maclachlan Spicer, L.C. Aamodt, B.S.H. Royce (Eds.): Photoacoustic and Photothermal Phenomena II, Springer Ser. Opt. Sci., Vol.62 (Springer, Berlin, Heidelberg 1990)Google Scholar
  62. 6.54
    L.B. Kreutzer: Laser optoacoustic spectroscopy: A new technique of gas analysis. Anal. Chem. 46, 239A (1974)Google Scholar
  63. 6.55
    W. Schnell, G. Fischer: Spectraphone measurements of isotopes of water vapor and nitricoxyde and of phosgene at selected wavelengths in the CO- and CO2-laser region. Opt. Lett. 2, 67 (1978)ADSGoogle Scholar
  64. 6.56
    C. Hornberger, W. Demtröder: Photoacoustic overtone spectroscopy of acetylene in the visible and near infrared. Chem. Phys. Lett. 190, 171 (1994)Google Scholar
  65. 6.57
    C.K.N. Patel: Use of vibrational energy transfer for excited-state opto-acoustic spectroscopy of molecules. Phys. Rev. Lett. 40, 535 (1978)ADSGoogle Scholar
  66. 6.58
    G. Stella, J. Gelfand, W.H. Smith: Photoacoustic detection spectroscopy with dye laser excitation. The 6190 Å CH4 and the 6450 NH3-bands. Chem. Phys. Lett. 39, 146 (1976)ADSGoogle Scholar
  67. 6.59
    A.M. Angus, E.E. Marinero, M.J. Colles: Opto-acoustic spectroscopy with a visible CW dye laser. Opt. Commun. 14, 223 (1975)ADSGoogle Scholar
  68. 6.60
    E.E. Marinero, M. Stuke: Quartz optoacoustic apparatus for highly corrosive gases. Rev. Sci. Instrum. 50, 31 (1979)Google Scholar
  69. 6.61
    A.C. Tarn: ‘Photoacoustic spectroscopy and other applications’. In: Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983) pp. 1–108Google Scholar
  70. 6.62
    V.Z. Gusev, A.A. Karabutov: Laser Optoacoustics. (Springer, Berlin, Heidelberg, New York 1997)Google Scholar
  71. 6.63
    A.C. Tarn, C.K.N. Patel: High-resolution optoacoustic spectroscopy of rare-earth oxide powders. Appl. Phys. Lett. 35, 843 (1979)ADSGoogle Scholar
  72. 6.64
    T.E. Gough, G. Scoles: Optothermal infrared spectroscopy. In: Laser Spectroscopy V, ed. by A.R.W. McKeller, T Oka, B.P. Stoicheff, Springer Ser. Opt. Sci., Vol.30 (Springer, Berlin, Heidelberg 1981) p.337Google Scholar
  73. 6.64a
    T.E. Gough, R.E. Miller, G. Scoles: Sub-Doppler resolution infrared molecular beam spectroscopy. Faraday Disc. 71, 6 (1981)Google Scholar
  74. 6.65
    M. Zen: ‘Cyrogenic bolometers’. In: Atomic and Molecular Beams Methods, Vol. I (Oxford Univ. Press, London 1988) Vol. 1Google Scholar
  75. 6.66
    R.E. Miller: Infrared laser spectroscopy. In: Atomic and Molecular Beam Methods, ed. by G. Scoles, (Oxford Univ. Press, London 1992) pp. 192 ff.;Google Scholar
  76. 6.66a
    D. Bassi: Detection principles. In: Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, London 1992) pp. 153 ff.Google Scholar
  77. 6.67
    T.B. Platz, W. Demtröder: Sub-Doppler optothermal overtone spectroscopy of ethylene. Chem. Phys. Lett. 294, 397 (1998)ADSGoogle Scholar
  78. 6.68
    K.K. Lehmann, G. Scoles: Intramolecular dynamics from Eigenstate-resolved infrared spectra. Ann. Rev. Phys. Chem. 45, 241 (1994)ADSGoogle Scholar
  79. 6.69
    H. Coufal: Photothermal spectroscopy and its analytical application. Fresenius Z. Anal. Chem. 337, 835 (1990)Google Scholar
  80. 6.70
    F. Träger: Surface analysis by laser-induced thermal waves. Laser u. Optoelektronik 18, 216 Sept. (1986);Google Scholar
  81. 6.70a
    H. Coufal, F. Träger, T.J. Chuang, A.C. Tarn: High sensitivity photothermal surface spectroscopy with polarization modulation. Surf, Sci. 145, L504 (1984)Google Scholar
  82. 6.71
    P.E. Siska: Molecular-beam studies of Penning ionization. Rev. Mod. Phys. 65, 337 (1993)ADSGoogle Scholar
  83. 6.72
    Y.Y. Kuzyakov, N.B. Zorov: Atomic ionization spectrometry. CRC Critical Rev. Anal. Chem. 20, 221 (1988)Google Scholar
  84. 6.73
    G.S. Hurst, M.G. Payne, S.P. Kramer, J.P. Young: Resonance ionization spectroscopy and single atom detection. Rev. Mod. Phys. 51, 767 (1979)ADSGoogle Scholar
  85. 6.74
    G.S. Hurst, M.P. Payne, S.P. Kramer, C.H. Cheng: Counting the atoms. Physics Today 33, 24 (September 1980)Google Scholar
  86. 6.75
    M. Keil, H.G. Krämer, A. Kudell, M.A. Baig, J. Zhu, W. Demtröder, W. Meyer: Rovibrational structures of the pseudo-rotating lithium trimer Li3. J. Chem. Phys. 113, 7414 (2000)ADSGoogle Scholar
  87. 6.76
    L. Wöste: Zweiphotonen-Ionisation. Laser u. Optoelektronik 15, 9 (February 1983)Google Scholar
  88. 6.77
    G. Delacretaz, J.D. Garniere, R. Monot, L. Wöste: Photoionization and fragmentation of alkali metal clusters in supersonic molecular beams. Appl. Phys. B 29, 55 (1982)ADSGoogle Scholar
  89. 6.78
    H.J. Foth, J.M. Gress, C. Hertzler, W. Demtröder: Sub-Doppler laser spectroscopy of Na3. Z. Physik D 18, 257 (1991)ADSGoogle Scholar
  90. 6.79
    V.S. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando 1987)Google Scholar
  91. 6.80
    G. Hurst, M.G. Payne: in Principles and Applications of Resonance Ionization Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)Google Scholar
  92. 6.81
    D.H. Parker: ‘Laser ionization spectroscopy and mass spectrometry’. In: Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)Google Scholar
  93. 6.82
    V. Beutel, G.L. Bhale, M. Kuhn, W. Demtröder: The ionization potential of Ag2. Chem. Phys. Lett. 185, 313 (1991)ADSGoogle Scholar
  94. 6.83
    H.J. Neusser, U. Boesl, R. Weinkauf, E.W. Schlag: High-resolution laser mass spectrometer. Int. J. Mass Spectrom. 60, 147 (1984)Google Scholar
  95. 6.84
    J.E. Parks, N. Omeneto (Eds.): Resonance Ionization Spectroscopy. Inst. Phys. Conf. Ser. 114 (1990)Google Scholar
  96. 6.84a
    D.M. Lübman (Ed.): Lasers and Mass Spectrometry (Oxford Univ. Press, London 1990)Google Scholar
  97. 6.85
    P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann, W. Ruster, F. Ames, J. Bonn, H.J. Kluge, V. Krönert, E.W. Otten: Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser. Appl. Phys. B 38, 249 (1985)ADSGoogle Scholar
  98. 6.86
    D. Popescu, M.L. Pascu, C.B. Collins, B.W. Johnson, I. Popescu: Use of space charge amplification techniques in the absorption spectroscopy of Cs and Cs2. Phys. Rev. A 8, 1666 (1973)ADSGoogle Scholar
  99. 6.87
    K. Niemax: Spectroscopy using thermionic diode detectors. Appl. Phys. B 38, 1 (1985)Google Scholar
  100. 6.88
    R. Beigang, W. Makat, A. Timmermann: A thermionic ring diode for high resolution spectroscopy. Opt. Commun. 49, 253 (1984)ADSGoogle Scholar
  101. 6.89
    R. Beigang, A. Timmermann: The thermionic annular diode: a sensitive detector for highly excited atoms and molecules. Laser u. Optoelektronik 4, 252 (1984)Google Scholar
  102. 6.90
    D.S. King, P.K. Schenck: Optogalvanic spectroscopy. Laser Focus 14, 50 (March 1978)Google Scholar
  103. 6.91
    J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)ADSGoogle Scholar
  104. 6.92
    B. Barbieri, N. Beverini, A. Sasso: Optogalvanic spectroscopy. Rev. Mod. Phys. 62, 603 (1990)ADSGoogle Scholar
  105. 6.93
    K. Narayanan, G. Ullas, S.B. Rai: A two step optical double resonance study of a Fe-Ne hollow cathode discharge using optogalvanic detection. Opt. Commun. 184, 102 (1991)Google Scholar
  106. 6.94
    C.R. Webster, C.T. Rettner: Laser optogalvanic spectroscopy of molecules. Laser Focus 19, 41 (February 1983)Google Scholar
  107. 6.94a
    D. Feldmann: Optogalvanic spectroscopy of some molecules in discharges: NH2, NO2, A2 and N2. Opt. Commun. 29, 67 (1979)ADSGoogle Scholar
  108. 6.95
    K. Kawakita, K. Fukada, K. Adachi, S. Maeda, C. Hirose: Doppler-free optogalvanic spectrum of He2(b 3g - f 3∆u) transitions. J. Chem. Phys. 82, 653 (1985)ADSGoogle Scholar
  109. 6.96
    K. Myazaki, H. Scheingraber, C.R. Vidal: ‘Optogalvanic double-resonance spectroscopy of atomic and molecular discharge’. In: Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol. 40 (Springer, Berlin, Heidelberg 1983) p. 93Google Scholar
  110. 6.97
    J.C Travis: ‘Analytical optogalvanic spectroscopy in flames’. In: Analytical Laser Spectroscopy, ed. by S. Martellucci, A.N. Chester (Plenum, New York 1985) p. 213Google Scholar
  111. 6.98
    D. King, P. Schenck, K. Smyth, J. Travis: Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps. Appl. Opt. 16, 2617 (1977)ADSGoogle Scholar
  112. 6.99
    V. Kaufman, B. Edlen: Reference wavelength from atomic spectra in the range 15 Å to 25 000 Å. J. Phys. Chem. Ref. Data 3, 825 (1974)ADSGoogle Scholar
  113. 6.100
    A. Giacchetti, R.W. Stanley, R. Zalubas: Proposed secondary standard wavelengths in the spectrum of thorium. J. Opt. Soc. Am. 60, 474 (1969)ADSGoogle Scholar
  114. 6.101
    J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow: ‘Doppler-free optogalvanic spectroscopy’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p. 188Google Scholar
  115. 6.102
    W. Bridges: Characteristics of an optogalvanic effect in cesium and other gas discharge plasmas. J. Opt. Soc. Am. 68, 352 (1978)MathSciNetADSGoogle Scholar
  116. 6.103
    R.S. Stewart, J.E. Lawler (Eds.): Optogalvanic Spectroscopy (Hilger, London 1991)Google Scholar
  117. 6.104
    R.J. Saykally, R.C. Woods: High resolution spectroscopy of molecular ions. Ann. Rev. Phys. Chem. 32, 403 (1981)ADSGoogle Scholar
  118. 6.105
    C.S. Gudeman, R.J. Saykally: Velocity modulation infrared laser spectroscopy of molecular ions. Am. Rev. Phys. Chem. 35, 387 (1984)ADSGoogle Scholar
  119. 6.106
    C.E. Blom, K. Müller, R.R. Filgueira: Gas discharge modulation using fast electronic switches. Chem. Phys. Lett. 140, 489 (1987)ADSGoogle Scholar
  120. 6.107
    M. Gruebele, M. Polak, R. Saykally: Velocity modulation laser spectroscopy of negative ions: The infrared spectrum of SH-. J. Chem. Phys. 86, 1698 (1987)ADSGoogle Scholar
  121. 6.108
    J.W. Farley: Theory of the resonance lineshape in velocity-modulation spectroscopy J. Chem. Phys. 95, 5590 (1991)ADSGoogle Scholar
  122. 6.109
    G. Lan, H.D. Tholl, J.W. Farley: Double-modulation spectroscopy of molecular ions: Eliminating the background in velocity-modulation spectroscopy. Rev. Sci. Instrum. 62, 944 (1991)ADSGoogle Scholar
  123. 6.110
    M.B. Radunsky, R.J. Saykally: Electronic absorption spectroscopy of molecular ions in plasmas by dye laser velocity modulation spectroscopy. J. Chem. Phys. 87, 898 (1987)ADSGoogle Scholar
  124. 6.111
    K.J. Button (Ed.): Infrared and Submillimeter Waves (Academic, New York 1979)Google Scholar
  125. 6.112
    K.M. Evenson, R.J. Saykally, D.A. Jennings, R.E. Curl, J.M. Brown: ‘Far infrared laser magnetic resonance’. In: Chemical and Biochemical Applications of Lasers, ed. by C.B. Moore (Academic, New York 1980) Chapt.VGoogle Scholar
  126. 6.113
    P.B. Davies, K.M. Evenson: ‘Laser magnetic resonance (LMR) spectroscopy of gaseous free radicals’. In: Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lect. Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975)Google Scholar
  127. 6.114
    W. Urban, W. Herrmann: Zeeman modulation spectroscopy with spin-flip Raman laser. Appl. Phys. 17, 325 (1978)ADSGoogle Scholar
  128. 6.115
    K.M. Evenson, C.J. Howard: ‘Laser Magnetic Resonance Spectroscopy’. In: Laser Spectroscopy. R.G. Brewer, ed. by A. Mooradian (Plenum, New York 1974)Google Scholar
  129. 6.116
    A. Hinz, J. Pfeiffer, W. Bohle, W. Urban: Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection. Mol. Phys. 45, 1131 (1982)ADSGoogle Scholar
  130. 6.117
    Y Ueda, K. Shimoda: ‘Infrared laser Stark spectroscopy’. In: Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p. 186Google Scholar
  131. 6.118
    K. Uehara, T. Shimiza, K. Shimoda: High resolution Stark spectroscopy of molecules by infrared and far infrared masers. IEEE J. Quantum Electron. 4, 728 (1968)ADSGoogle Scholar
  132. 6.119
    K. Uchara, K. Takagi, T. Kasuya: Stark Modulation Spectrometer, Using a Wideband Zeeman-Tuned He-Xe Laser. Appl. Phys. 24 (1981)Google Scholar
  133. 6.120
    L.R. Zink, D.A. Jennings, K.M. Evenson, A. Sasso, M. Inguscio: New techniques in laser Stark spectroscopy. J. Opt. Soc. Am. B 4, 1173 (1987)ADSGoogle Scholar
  134. 6.121
    K.M. Evenson, R.J. Saykally, D.A. Jennings, R.F. Curl, J.M. Brown: ‘Far infrared laser magnetic resonance’. In: Chemical and Biochemical Applications of Lasers, Vol. V, ed. by C.B. Moore (Academic, New York 1980)Google Scholar
  135. 6.122
    M. Inguscio: Coherent atomic and molecular spectroscopy in the far infrared. Phys. Scripta 37, 699 (1989)ADSGoogle Scholar
  136. 6.123
    W.H. Weber, K. Tanaka, T. Kanaka (Eds.): Stark and Zeeman techniques in laser spectroscopy. J. Opt. Soc. Am. B 4, 1141 (1987)Google Scholar
  137. 6.124
    J.L. Kinsey: Laser-induced fluorescence. Ann. Rev. Phys. Chem. 28, 349 (1977)ADSGoogle Scholar
  138. 6.125
    A. Delon, R. Jost: Laser-induced dispersed fluorescence spectroscopy of 107 vibrome levels of NO2 ranging from 12 000 to 17 600 cm-1. J. Chem. Phys. 114, 331 (2001)ADSGoogle Scholar
  139. 6.126
    M.A. Clyne, I.S. McDermid: Laser-induced fluorescence: electronically excited states of small molecules. Adv. Chem. Phys. 50, 1 (1982)Google Scholar
  140. 6.127
    J.R. Lakowicz: Topics in Fluorescence Spectroscopy (Plenum, New York 1991);Google Scholar
  141. 6.127a
    J.N. Miller: Fluorescence Spectroscopy (Ellis Harwood, Singapore 1991);Google Scholar
  142. 6.127b
    O.S. Wolflich (Ed.): Fluorescence Spectroscopy (Springer, Berlin, Heidelberg 1992)Google Scholar
  143. 6.128
    C. Schiitte: The Theory of Molecular Spectroscopy (North-Holland, Amsterdam 1976)Google Scholar
  144. 6.129
    G. Herzberg: Molecular Spectra and Molecular Structure, Vol.1 (Van Nostrand, New York 1950)Google Scholar
  145. 6.130
    G. Höning, M. Cjajkowski, M. Stock, W. Demtröder: High resolution laser spectroscopy of Cs2. J. Chem. Phys. 71, 2138 (1979)ADSGoogle Scholar
  146. 6.131
    C. Amiot, W. Demtröder, C.R. Vidal: High resolution Fourier-spectroscopy and laser spectroscopy of Cs2. J. Chem. Phys. 88, 5265 (1988)ADSGoogle Scholar
  147. 6.132
    C. Amiot: Laser-induced fluorescence of Rb2. J. Chem. Phys. 93, 8591 (1990)ADSGoogle Scholar
  148. 6.133
    R. Bacis, S. Chunassy, R.W. Fields, J.B. Koffend, J. Verges: High resolution and sub-Doppler Fourier transform spectroscopy. J. Chem. Phys. 72, 34 (1980)ADSGoogle Scholar
  149. 6.134
    R. Rydberg: Graphische Darstellung einiger bandenspektroskopischer Ergebnisse. Z. Physik 73, 376 (1932)ADSGoogle Scholar
  150. 6.135
    O. Klein: Zur Berechnung von Potentialkurven zweiatomiger Moleküle mit Hilfe von Spekraltermen. Z. Physik 76, 226 (1938)ADSGoogle Scholar
  151. 6.136
    A.L.G. Rees: The calculation of potential-energy curves from band spectroscopic data. Proc. Phys. Soc. London, Sect. A 59, 998 (1947)ADSzbMATHGoogle Scholar
  152. 6.137
    R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, D.L. Albritton: J. Mol. Spectrosc. 46, 37 (1973)ADSGoogle Scholar
  153. 6.138
    G. Ennen, C. Ottinger: Laser fluorescence measurements of the 7LiD(X 1+)-potential up to high vibrational quantum numbers. Chem. Phys. Lett. 36, 16 (1975)ADSGoogle Scholar
  154. 6.139
    M. Raab, H. Weickenmeier, W. Demtröder: The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)ADSGoogle Scholar
  155. 6.140
    C.E. Fellows: The NaLi 1 1+ (X) electronic ground state dissociation limit. J. Chem. Phys. 94, 5855 (1991)ADSGoogle Scholar
  156. 6.141
    A.G. Gaydon: Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London 1968)Google Scholar
  157. 6.142
    H. Atmanspacher, H. Scheingraber, C.R. Vidal: Laser-induced fluorescence of the MgCa molecule. J. Chem. Phys. 82, 3491 (1985)ADSGoogle Scholar
  158. 6.143
    R.J. LeRoy: Molecular Spectroscopy, Specialist Periodical Reports, Vol.1 (Chem. Soc, Burlington Hall, London 1973) p. 113Google Scholar
  159. 6.144
    W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and Franck-Condon factors for the B 1uX MATH-system of Na2. J. Mol. Spectrosc. 61, 382 (1976)ADSGoogle Scholar
  160. 6.145
    E.J. Breford, F. Engelke: Laser-induced fluorescence in supersonic nozzle beams: applications to the NaK D 1∏ → X 1∑ and D </sup>∏ → X 3∑ systems. Chem. Phys. Lett. 53, 282 (1978);ADSGoogle Scholar
  161. 6.145a
    E.J. Breford, F. Engelke: J. Chem. Phys. 71, 1949 (1979)Google Scholar
  162. 6.146
    J. Tellinghuisen, G. Pichler, W.L. Snow, M.E. Hillard, R.J. Exton: Analaysis of the diffuse bands near 6100 Å in the fluorescence spectrum of Cs2. Chem. Phys. 50, 313 (1980)Google Scholar
  163. 6.147
    H. Scheingraber, C.R. Vidal: Discrete and continuous Franck-Condon factors of the Mg2 A 1u-X 1Is system and their J dependence. J. Chem. Phys. 66, 3694 (1977)ADSGoogle Scholar
  164. 6.148
    C.A. Brau, J.J. Ewing: ‘Spectroscopy, kinetics and performance of rare-gas halide lasers’. In: Electronic Transition Lasers, ed. by J.I. Steinfeld (MIT Press, Cambridge, Mass. 1976)Google Scholar
  165. 6.149
    D. Eisel, D. Zevgolis, W. Demtröder: Sub-Doppler laser spectroscopy of the NaK-molecule. J. Chem. Phys. 71, 2005 (1979)ADSGoogle Scholar
  166. 6.150
    E.V. Condon: Nuclear motions associated with electronic transitions in diatomic molecules. Phys. Rev. 32, 858 (1928)ADSGoogle Scholar
  167. 6.151
    J. Tellinghuisen: The McLennan bands of I2: A highly structured continuum. Chem. Phys. Lett. 29, 359 (1974)ADSGoogle Scholar
  168. 6.152
    H.J. Vedder, M. Schwarz, H.J. Foth, W. Demtröder: Analysis of the perturbed NO2 2B22A1 system in the 591.4–592.9 nm region based on sub-Doppler laser spectroscopy. J. Mol. Spectrosc. 97, 92 (1983)ADSGoogle Scholar
  169. 6.153
    A. Delon, R. Jost: Laser-induced dispersed fluorescence spectra of jet-cooled NO2. J. Chem. Phys. 95, 5686 (1991)ADSGoogle Scholar
  170. 6.154
    Th. Zimmermann, H.J. Köppel, L.S. Cederbaum, G. Persch, W. Demtröder: Confirmation of random-matrix fluctuations in molecular spectra. Phys. Rev. Lett. 61, 3 (1988)ADSGoogle Scholar
  171. 6.155
    K.K. Lehmann, St.L. Coy: The optical spectrum of NO2: Is it or isn’t it chaotic? Ber. Bunsenges. Phys. Chem. 92, 306 (1988)Google Scholar
  172. 6.156
    J.M. Gomez-Llorentl, H. Taylor: Spectra in the chaotic region: A classical analysis for the sodium trimer. J. Chem. Phys. 91, 953 (1989)ADSGoogle Scholar
  173. 6.157
    K.L. Kompa: Chemical Lasers, Topics Curr. Chem., Vol.37 (Springer, Berlin, Heidelberg 1975)Google Scholar
  174. 6.158
    R. Schnabel, M. Kock: Time-Resolved nonlinear LIF-techniques for a combined lifetime and branching fraction measurements. Phys. Rev. A 63, 125 (2001)Google Scholar
  175. 6.159
    P.J. Dagdigian, H.W. Cruse, A. Schultz, R.N. Zare: Product state analysis of BaO from the reactions Ba + CO2 and Ba + O2. J. Chem. Phys. 61, 4450 (1974)ADSGoogle Scholar
  176. 6.160
    J.G. Pruett, R.N. Zare: State-to-state reaction rates: Ba + HF(v = 0) → BaF(v = 0 - 12) + H″. J. Chem. Phys. 64, 1774 (1976)ADSGoogle Scholar
  177. 6.161
    H.W. Cruse, P.J. Dagdigian, R.N. Zare: Crossed beam reactions of barium with hydrogen halides. Faraday Discuss. Chem. Soc. 55, 277 (1973)Google Scholar
  178. 6.162
    Y. Nozaki, et al.: Identification of Si and SiH. J. Appl. Phys. 88, 5437 (2000)ADSGoogle Scholar
  179. 6.163
    V. Hefter, K. Bergmann: ‘Spectroscopic detection methods’. In: Atomic and Molecular Beam Methods, Vol. I, ed. by G. Scoles (Oxford Univ. Press, New York 1988) p. 193Google Scholar
  180. 6.164
    J.E.M. Goldsmith: ‘Recent advances in flame diagnostics using fluorescence and ionisation techniques’. In: Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987) p.337Google Scholar
  181. 6.165
    J. Wolfrum (Ed.): Laser diagnostics in combustion. Appl. Phys. B 50, 439 (1990)Google Scholar
  182. 6.166
    T.P. Hughes: Plasma and Laser Light (Hilger, Bristol 1975)Google Scholar
  183. 6.167
    M. Bellini, P. DeNatale, G. DiLonardo, L. Fusina, M. Inguscio, M. Prevedelli: Tunable far infrared spectroscopy of 16O3 ozone. J. Mol. Spectrosc. 152, 256 (1992)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations