Spectroscopic Instrumentation

  • Wolfgang Demtröder
Part of the Advanced Texts in Physics book series (ADTP)


This chapter is devoted to a discussion of instruments and techniques that are of fundamental importance for the measurements of wavelengths and line profiles, or for the sensitive detection of radiation. The optimum selection of proper equipment or the application of a new technique is often decisive for the success of an experimental investigation. Since the development of spectroscopic instrumentation has shown great progress in recent years, it is most important for any spectroscopist to be informed about the state-of-the-art regarding sensitivity, spectral resolving power, and signal-to-noise ratios attainable with modern equipment.


Partial Wave Image Intensifier Path Difference Entrance Slit Free Spectral Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    R. Kingslake, B.J. Thompson (Eds.): Applied Optics and Optical Engineering, Vols. 1–10 (Academic, New York 1969–1985);Google Scholar
  2. M. Bass, E. van Skryland, D. Williams, W. Wolfe (Eds.): Handbook of Optics, Vols. I and II (McGraw-Hill, New York 1995)Google Scholar
  3. 4.2
    E. Wolf (Ed.): Progress in Optics, Vols. 1–42 (North-Holland, Amsterdam 1961–2001)Google Scholar
  4. 4.3
    M. Born, E. Wolf: Principles of Optics, 4th edn. (Pergamon, Oxford 1970)Google Scholar
  5. 4.4
    A.R Thorne, U. Litzen, S. Johansson: Spectrophysics, 2nd edn. (Springer, Berlin 1999);Google Scholar
  6. 4.4a
    G.L. Clark (Ed.): The Encyclopedia of Spectroscopy (Reinhold, New York 1960)Google Scholar
  7. 4.5(a)
    L. Levi: Applied Optics (Wiley, London 1980);Google Scholar
  8. 4.5 (b)
    D.F. Gray (Ed.): Am. Inst. Phys. Handbook (McGraw-Hill, New York 1980)Google Scholar
  9. 4.6
    R.D. Guenther: Modern Optics (Wiley, New York 1990)Google Scholar
  10. 4.7
    F. Graham-Smith, T.A. King: Optics and Photonics (Wiley, London 2000)Google Scholar
  11. 4.8
    H. Lipson: Optical Physics, 3rd edn. (Cambridge University Press, Cambridge 1995)zbMATHCrossRefGoogle Scholar
  12. 4.9
    K.I. Tarasov: The Spectroscope (Hilger, London 1974)Google Scholar
  13. 4.10
    S.P. Davis: Diffraction Grating Spectrographs (Holt, Rinehard & Winston, New York 1970)Google Scholar
  14. 4.11
    A.B. Schafer, L.R. Megil, L. Dropleman: Optimization of the Czerny-Turner spectrometer. J. Opt. Soc. Am. 54, 879 (1964)ADSCrossRefGoogle Scholar
  15. 4.12
    Handbook of Diffraction Gratings, Ruled and Holographic (Jobin Yvon Optical Systems, Metuchen, NJ 1970) Bausch and Lomb Diffraction Grating Handbook (Bausch & Lomb, Rochester, NY 1970)Google Scholar
  16. 4.13
    G.W. Stroke: ‘Diffraction gratings’. In: Handbuch der Physik, Vol. 29, ed. by S. Flügge (Springer, Berlin, Heidelberg 1967)Google Scholar
  17. 4.14
    M.C. Hutley: Diffraction Gratings (Academic, London 1982);Google Scholar
  18. 4.14a
    E. Popov, E.G. Loewen: Diffraction Gratings and Applications (Dekker, New York 1997)Google Scholar
  19. 4.15
    See, for example, E. Hecht: Optics, 4th edn. (Addison-Wesley, London 2002)Google Scholar
  20. 4.16
    G. Schmahl, D. Rudolph: ‘Holographic diffraction gratings’. In: Progress in Optics 14, 195 (North-Holland, Amsterdam 1977)Google Scholar
  21. 4.17
    E. Loewen: ‘Diffraction gratings: ruled and holographic’. In: Applied Optics and Optical Engineering, Vol. 9 (Academic, New York 1980)Google Scholar
  22. 4.18
    M.D. Perry, et al.: High-efficiency multilayer dielectric diffraction gratings. Opt. Lett. 20, 940 (1995)MathSciNetADSCrossRefGoogle Scholar
  23. 4.19
    Basic treatments of interferometers may be found in general textbooks on optics. A more detailed discussion has, for instance, been given in S. Tolansky: An Introduction to Interferometry (Longman, London 1973);Google Scholar
  24. 4.19a
    W.H. Steel: Interferometry (Cambridge Univ. Press, Cambridge 1967);Google Scholar
  25. 4.19b
    J. Dyson: Interferometry (Machinery Publ., Brighton 1970);Google Scholar
  26. 4.19c
    M. Francon: Optical Interferometry (Academic, New York 1966)Google Scholar
  27. 4.20
    H. Polster, J. Pastor, R.M. Scott, R. Crane, P.H. Langenbeck, R. Pilston, G. Steingerg: New developments in interferometry. Appl. Opt. 8, 521 (1969)ADSCrossRefGoogle Scholar
  28. 4.21
    K.M. Baird, G.R. Hanes: ‘Interferometers’. In: [4.1], Vol.4, pp.309–362Google Scholar
  29. 4.22
    P. Hariharan: Optical Interferometry (Academic, New York 1986)Google Scholar
  30. 4.22
    W.S. Gornall: The world of Fabry-Perots. Laser Appl. 2, 47 (1983)Google Scholar
  31. 4.23
    M. Francon, J. Mallick: Polarisation Interferometers (Wiley, London 1971)Google Scholar
  32. 4.24
    H. Welling, B. Wellingehausen: High resolution Michelson interferometer for spectral investigations of lasers. Appl. Opt. 11, 1986 (1972)ADSCrossRefGoogle Scholar
  33. 4.25
    P.R. Saulson: Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore 1994)CrossRefGoogle Scholar
  34. 4.26
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97 (1983)ADSCrossRefGoogle Scholar
  35. 4.26a
    A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, R.-H. Rinkleff: White-light cavities, atomic phase coherence and gravitational wave detectors. Opt. Commun. 134, 431 (1997)ADSCrossRefGoogle Scholar
  36. 4.27
    R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972)Google Scholar
  37. 4.28
    P. Griffiths, J.A. de Haseth: Fourier-Transform Infrared Spectroscopy (Wiley, New York 1986)Google Scholar
  38. 4.29
    V. Grigull, H. Rottenkolber: Two beam interferometer using a laser. J. Opt. Soc. Am. 57, 149 (1967);ADSCrossRefGoogle Scholar
  39. 4.29a
    W. Schumann, M. Dubas: Holographic Interferometry, Springer Ser. Opt. Sci., Vol. 16 (Springer, Berlin, Heidelberg 1979); W. Schumann, J.-P Zürcher, D. Cuche: Holography and Deformation Analysis, Springer Ser. Opt. Sci., Vol.46 (Springer, Berlin, Heidelberg 1986);Google Scholar
  40. 4.30
    W. Marlow: Hakenmethode. Appl. Opt. 6, 1715 (1967)ADSCrossRefGoogle Scholar
  41. 4.31
    I. Meroz (Ed.): Optical Transition Probabilities. A Representative Collection of Russian Articles (Israel Program for Scientific Translations, Jerusalem 1962)Google Scholar
  42. 4.32
    J.P. Marioge, B. Bonino: Fabry-Perot interferometer surfacing. Opt. Laser Technol. 4, 228 (1972)ADSCrossRefGoogle Scholar
  43. 4.33
    M. Hercher: Tilted etalons in laser resonators. Appl. Opt. 8, 1103 (1969)ADSCrossRefGoogle Scholar
  44. 4.34
    W.R. Leeb: Losses introduced by tilting intracavity etalons. Appl. Phys. 6, 267 (1975)ADSCrossRefGoogle Scholar
  45. 4.35
    W. Demtröder, M. Stock: Molecular constants and potential curves of Na2 from laser-induced fluorescence. J. Mol. Spectrosc. 55, 476 (1975)ADSCrossRefGoogle Scholar
  46. 4.36
    P. Connes: L’etalon de Fabry-Perot spherique. Phys. Radium 19, 262 (1958);CrossRefGoogle Scholar
  47. 4.36a
    P. Connes: Quantum Electronics and Coherent Light, ed. by PH. Miles (Academic, New York 1964) p. 198Google Scholar
  48. 4.37
    D.A. Jackson: The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams. Proc. Roy. Soc. (London) A 263, 289 (1961)ADSCrossRefGoogle Scholar
  49. 4.38
    J.R. Johnson: A high resolution scanning confocal interferometer. Appl. Opt. 7, 1061 (1968)ADSCrossRefGoogle Scholar
  50. 4.39
    M. Hercher: The spherical mirror Fabry-Perot interferometer. Appl. Opt. 7, 951 (1968)ADSCrossRefGoogle Scholar
  51. 4.40
    R.L. Fork, D.R. Herriot, H. Kogelnik: A scanning spherical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)ADSCrossRefGoogle Scholar
  52. 4.41
    F. Schmidt-Kaler, D. Leibfried, M. Weitz, T.W. Hänsch: Precision measurements of the isotope shift of the ls-2s transition of atomic hydrogen and deuterium. Phys. Rev. Lett. 70, 2261 (1993)ADSCrossRefGoogle Scholar
  53. 4.42
    J.R. Johnson: A method for producing precisely confocal resonators for scanning interferometers. Appl. Opt. 6, 1930 (1967)ADSCrossRefGoogle Scholar
  54. 4.43
    P. Hariharan: Optical Interferometry (Academic, New York 1985); G.W. Hopkins (Ed.): Interferometry. SPIE Proc. 192 (1979); R.J. Pryputniewicz (Ed.): Industrial Interferometry. SPIE Proc. 746 (1987); R.J. Pryputniewicz (Ed.): Laser Interferometry. SPIE Proc. 1553 (1991);Google Scholar
  55. 4.43a
    J.D. Briers: Interferometric testing of optical systems and components. Opt. Laser Techn. (February 1972) p. 28Google Scholar
  56. 4.44
    J.M. Vaughan: The Fabry-Perot Interferometer (Hilger, Bristol 1989);Google Scholar
  57. 4.44a
    Z. Jaroscewicz, M. Pluta (Eds.): Interferometry 89: 100 Years after Michelson: State of the Art and Applications. SPIE Proc. 1121 (1989)Google Scholar
  58. 4.45
    J. McDonald: Metal Dielectric Multilayer (Hilger, London 1971)Google Scholar
  59. 4.46
    A. Thelen: Design of Optical Interference Coatings (McGraw-Hill, New York 1988)Google Scholar
  60. 4.46a
    Z. Knittl: Optics of Thin Films (Wiley, New York 1976)Google Scholar
  61. 4.47
    V.R. Costich: ‘Multilayer dielectric coatings’. In: Handbook of Lasers, ed. by R.J. Pressley (CRC, Cleveland, Ohio 1972)Google Scholar
  62. 4.48
    H.A. MacLeod (Ed.): Optical interference coatings. Appl. Opt. 28, 2697–2974 (1989); R.E. Hummel, K.H. Guenther (Eds.): Optical Properties, Vol.1: Thin Films for Optical Coatings (CRC, Cleveland, Ohio 1995)Google Scholar
  63. 4.49
    A. Musset, A. Thelen: ‘Multilayer antireflection coatings’. In: Progress in Optics 3, 203 (North-Holland, Amsterdam 1970)Google Scholar
  64. 4.50
    J.T. Cox, G. Hass: In: Physics of Thin Films, Vol. 2, ed. by G. Hass (Academic, New York 1964)Google Scholar
  65. 4.51
    E. Delano, R.J. Pegis: ‘Methods of synthesis for dielectric multilayer filters’. In: Progress in Optics, Vol. 7, 69 (North-Holland, Amsterdam 1969)Google Scholar
  66. 4.52
    H.A. Macleod: Thin Film Optical Filter, 3rd edn. (Inst. of Physics Publ., London 2001)CrossRefGoogle Scholar
  67. 4.53
    J. Evans: The birefringent filter. J. Opt. Soc. Am. 39, 229 (1949)ADSCrossRefGoogle Scholar
  68. 4.54
    H. Walther, J.L. Hall: Tunable dye laser with narrow spectral output. Appl. Phys. Lett. 17, 239 (1970)ADSCrossRefGoogle Scholar
  69. 4.55
    M. Okada, S. Iliri: Electronic tuning of dye lasers by an electro-optic birefringent Fabry-Perot etalon. Opt. Commun. 14, 4 (1975)ADSCrossRefGoogle Scholar
  70. 4.56
    B.H. Billings: The electro-optic effect in uniaxial crystals of the type XH2PO4. J. Opt. Soc. Am. 39, 797 (1949)ADSCrossRefGoogle Scholar
  71. 4.57
    R.L. Fork, D.R. Herriot, H. Kogelnik: A scanning spherical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)ADSCrossRefGoogle Scholar
  72. 4.58
    V.G. Cooper, B.K. Gupta, A.D. May: Digitally pressure scanned Fabry-Perot interferometer for studying weak spectral lines. Appl. Opt. 11, 2265 (1972)ADSCrossRefGoogle Scholar
  73. 4.59
    J.M. Telle, C.L. Tang: Direct absorption spectroscopy, using a rapidly tunable cw-dye laser. Opt. Commun. 11, 251 (1974)ADSCrossRefGoogle Scholar
  74. 4.60
    P. Cerez, S.J. Bennet: New developments in iodine-stabilized HeNe lasers. IEEE Trans. IM-27, 396 (1978)Google Scholar
  75. 4.61
    K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, G.W. Day, R.L. Barger, J.L. Hall: Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 29, 1346 (1972)ADSCrossRefGoogle Scholar
  76. 4.62
    K.M. Evenson, D.A. Jennings, F.R. Petersen, J.S. Wells: ‘Laser frequency measurements: a review, limitations and extension to 197 THz’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)Google Scholar
  77. 4.63
    K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Davidson, G.W. Day, R.L. Barger, J.L. Hall: The speed of light. Phys. Rev. Lett. 29, 1346 (1972)ADSCrossRefGoogle Scholar
  78. 4.64
    A. DeMarchi (Ed.): Frequency Standards and Metrology (Springer, Berlin, Heidelberg 1989)Google Scholar
  79. 4.65
    P.R. Bevington: Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York 1969)Google Scholar
  80. 4.66
    J.R. Taylor: An Introduction to Error Analysis (Univ. Science Books, Mill Valley 1982)zbMATHGoogle Scholar
  81. 4.67
    J.L. Hall, S.A. Lee: Interferometric real time display of CW dye laser wavelength with sub-Doppler accuracy. Appl. Phys. Lett. 29, 367 (1976)ADSCrossRefGoogle Scholar
  82. 4.68
    J.J. Snyder: ‘Fizeau wavelength meter’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p. 419Google Scholar
  83. 4.69
    R.L. Byer, J. Paul, M.D. Duncan: ‘A wavelength meter’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p. 414Google Scholar
  84. 4.70
    A. Fischer, H. Kullmer, W. Demtröder: Computer-controlled Fabry-Perot-wavemeter. Opt. Commun. 39, 277 (1981)ADSCrossRefGoogle Scholar
  85. 4.71
    N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya: High precision wavelength meter with Fabry-Perot optics. Appl. Phys. 25, 311 (1981)ADSCrossRefGoogle Scholar
  86. 4.72
    F.V. Kowalski, R.E. Teets, W. Demtröder, A.L. Schawlow: An improved wavemeter for CW lasers. J. Opt. Soc. Am. 68, 1611 (1978)ADSCrossRefGoogle Scholar
  87. 4.73
    R. Best: Theorie und Anwendung des Phase-Locked Loops (AT Fachverlag, Stuttgart 1976)Google Scholar
  88. 4.74
    F.M. Gardner: Phase Lock Techniques (Wiley, New York 1966);Google Scholar
  89. 4.74a
    F.M. Gardner: Phase-Locked Loop Data Book (Motorola Semiconductor Prod., Inc. 1973)Google Scholar
  90. 4.75
    B. Edlen: Dispersion of standard air. J. Opt. Soc. Am. 43, 339 (1953)ADSCrossRefGoogle Scholar
  91. 4.76
    J.C. Owens: Optical refractive index of air: Dependence on pressure, temperature and composition. Appl. Opt. 6, 51 (1967)ADSCrossRefGoogle Scholar
  92. 4.77
    R. Castell, W. Demtröder, A. Fischer, R. Kullmer, K. Wickert: The accuracy of laser wavelength meters. Appl. Phys. B 38, 1 (1985)ADSCrossRefGoogle Scholar
  93. 4.78
    J. Cachenaut, C. Man, P. Cerez, A. Brillet, F. Stoeckel, A. Jourdan, F. Hartmann: Description and accuracy tests of an improved lambdameter. Rev. Phys. Appl. 14, 685 (1979)CrossRefGoogle Scholar
  94. 4.79
    J. Viqué, B. Girard: A systematic error of Michelson’s type lambdameter. Rev. Phys. Appl. 21, 463 (1986)CrossRefGoogle Scholar
  95. 4.80
    J.J. Snyder: ‘An ultrahigh resolution frequency meter’. Proc. 35th Ann. Freq. Control USAERADCOM May 1981. Appl. Opt. 19, 1223 (1980)ADSCrossRefGoogle Scholar
  96. 4.81
    P. Juncar, J. Pinard: Instrument to measure wavenumbers of CW and pulsed laser lines: The sigma meter. Rev. Sci. Instrum. 53, 939 (1982);ADSCrossRefGoogle Scholar
  97. P. Jacquinot, P. Juncar, J. Pinard: ‘Motionless Michelson for high precision laser frequency measurements’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p.417Google Scholar
  98. 4.82
    J.J. Snyder: Fizeau wavemeter. SPIE Proc. 288, 258 (1981)CrossRefGoogle Scholar
  99. 4.83
    M.B. Morris, T.J. McIllrath, J. Snyder: Fizeau wavemeter for pulsed laser wavelength measurement. Appl. Opt. 23, 3862 (1984)ADSCrossRefGoogle Scholar
  100. 4.84
    J.L. Gardner: Compact Fizeau wavemeter. Appl. Opt. 24, 3570 (1985)ADSCrossRefGoogle Scholar
  101. 4.85
    J.L. Gardner: Wavefront curvature in a Fizeau wavemeter. Opt. Lett. 8, 91 (1983)ADSCrossRefGoogle Scholar
  102. 4.86 J.J. Keyes (Ed.): Optical and Infrared Detectors, 2nd edn., Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)Google Scholar
  103. 4.87
    P.N. Dennis: Photodetectors (Plenum, New York 1986)CrossRefGoogle Scholar
  104. 4.88
    M. Bleicher: Halbleiter-Optoelektronik (Hüthig, Heidelberg 1976)Google Scholar
  105. 4.89
    E.L. Dereniak, G.D. Boreman: Infrared Detectors and Systems (Wiley, New York 1996)Google Scholar
  106. 4.90
    G.H. Rieke: Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge 1994)Google Scholar
  107. 4.91
    J. Wilson, J.F.B. Hawkes: Optoelectronics (Prentice Hall, London 1983)Google Scholar
  108. 4.92
    R. Paul: Optoelektronische Halbleiterbauelemente (Teubner, Stuttgart 1985)Google Scholar
  109. 4.93
    T.S. Moss, G.J. Burell, B. Ellis: Semiconductor Opto-Electronics (Butterworth, London 1973)Google Scholar
  110. 4.94
    R.W. Boyd: Radiometery and the Detection of Optical Radiation (Wiley, New York 1983)Google Scholar
  111. 4.95
    E.L. Dereniak, D.G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)Google Scholar
  112. 4.96
    F. Stöckmann: Photodetectors, their performance and limitations. Appl. Phys. 7, 1 (1975)ADSCrossRefGoogle Scholar
  113. 4.97
    F. Grum, R.L. Becher: Optical Radiation Measurements, Vols. 1 and 2 (Academic, New York 1979 and 1980)Google Scholar
  114. 4.98 R.H. Kingston: Detection of Optical and Infrared Radiation, Springer Ser. Opt. Sci., Vol. 10 (Springer, Berlin, Heidelberg 1978)Google Scholar
  115. 4.99
    E.H. Putley: ‘Thermal detectors’. In: [4.86], p. 71Google Scholar
  116. 4.100
    T.E. Gough, R.E. Miller, G. Scoles: Infrared laser spectroscopy of molecular beams. Appl. Phys. Lett. 30, 338 (1977)ADSCrossRefGoogle Scholar
  117. 4.100a
    M. Zen: Cryogenic bolometers, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, New York 1988) Vol. 1Google Scholar
  118. 4.101
    D. Bassi, A. Boschetti, M. Scotoni, M. Zen: Molecular beam diagnostics by means of fast superconducting bolometer. Appl. Phys. B 26, 99 (1981)ADSCrossRefGoogle Scholar
  119. 4.102
    J. Clarke, P.L. Richards, N.H. Yeh: Composite superconducting transition edge bolometer. Appl. Phys. Lett. B 30, 664 (1977)ADSCrossRefGoogle Scholar
  120. 4.103
    M.J.E. Golay: A Pneumatic Infra-Red Detector. Rev. Scient. Instrum. 18, 357 (1947)ADSCrossRefGoogle Scholar
  121. 4.104
    B. Tiffany: Introduction and review of pyroelectric detectors. SPIE Proc. 62, 153 (1975)ADSCrossRefGoogle Scholar
  122. 4.105
    C.B. Boundy, R.L. Byer: Subnanosecond pyroelectric detector. Appl. Phys. Lett. 21, 10 (1972)Google Scholar
  123. 4.106
    L.E. Ravich: Pyroelectric detectors and imaging. Laser Focus 22, 104 (1986)Google Scholar
  124. 4.107
    H. Melchior: ‘Demodulation and photodetection techniqes’. In: Laser Handbook, Vol. I, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 725Google Scholar
  125. 4.108
    H. Melchior: Sensitive high speed photodetectors for the demodulation of visible and near infrared light. J. Lumin. 7, 390 (1973)CrossRefGoogle Scholar
  126. 4.109
    D. Long: ‘Photovoltaic and photoconductive infrared detectors’. In: [4.86], p. 101Google Scholar
  127. 4.110
    E. Sakuma, K.M. Evenson: Characteristics of tungsten nickel point contact diodes used as a laser harmonic generation mixers. IEEE J. QE-10, 599 (1974)CrossRefGoogle Scholar
  128. 4.111
    K.M. Evenson, M. Ingussio, D.A. Jennings: Point contact diode at laser frequencies. J. Appl. Phys. 57, 956 (1985);ADSCrossRefGoogle Scholar
  129. 4.111a
    H.D. Riccius, K.D. Siemsen: Point-contact diodes. Appl. Phys. A 35, 67 (1984);ADSCrossRefGoogle Scholar
  130. 4.111b
    H. Rösser: Heterodyne spectroscopy for submillimeter and far-infrared wavelengths. Infrared Phys. 32, 385 (1991)CrossRefGoogle Scholar
  131. 4.112
    H.-U. Daniel, B. Maurer, M. Steiner: A broad band Schottky point contact mixer for visible light and microwave harmonics. Appl. Phys. B 30, 189 (1983);ADSCrossRefGoogle Scholar
  132. 4.112a
    T.W. Crowe: Ga As Schottky barrier mixer diodes for the frequency range from 1–10 THz. Int. J. IR and Millimeter Waves 10, 765 (1989);ADSCrossRefGoogle Scholar
  133. 4.112b
    H.P. Röser, R.V. Titz, G.W. Schwab, M.F. Kimmitt: Current-frequency characteristics of submicron Ga As Schottky barrier diodes with femtofarad capacitances. J. Appl. Phys. 72, 3194 (1992)ADSCrossRefGoogle Scholar
  134. 4.113
    F. Capasso: Band-gap engineering via graded-gap structure: Applications to novel photodetectors. J. Vac. Sci. Techn. B12, 457 (1983)Google Scholar
  135. 4.114 F. Capasso (Ed.): Physics of Quantum Electron Devices, Springer Ser. Electron. Photon., Vol.28 (Springer, Berlin, Heidelberg 1990)Google Scholar
  136. 4.115
    F. Capasso: Multilayer avalanche photodiodes and solid state photomultipliers. Laser Focus 20, 84 (July 1984)Google Scholar
  137. 4.116
    G.A. Walter, E.L. Dereniak: Photodetectors for focal plane arrays. Laser Focus 22, 108 (March 1986)Google Scholar
  138. 4.117
    A. Tebo: IR detector technology. Arrays. Laser Focus 20, 68 (July 1984); E.L. Dereniak, R.T. Sampson (Eds.): Infrared Detectors, Focal Plane Arrays and Imaging Sensors, SPIE Proc. 1107 (1989); E.L. Dereniak (Ed.): Infrared Detectors and Arrays. SPIE Proc. 930 (1988)Google Scholar
  139. 4.118
    D.F. Barbe (Ed.): Charge-Coupled Devices, Topics Appl. Phys., Vol. 38 (Springer, Berlin, Heidelberg 1980)Google Scholar
  140. 4.119
    see special issue on CCDs of Berkeley Lab 23, 3 (Fall 2000) and G.C. Holst: CCD Arrays, Cameras and Display (Sofitware, ISBN 09640000024, 2000)Google Scholar
  141. K.P. Proli, J.M. Nivet, C. Voland: Enhancement of the dynamic range of the detected intensity in an optical measurement system by a three channel technique. Appl. Opt. 41, 130 (2002)ADSCrossRefGoogle Scholar
  142. 4.120
    H. Zimmermann: Integrated Silicon Optoelectronics (Springer, Berlin, Heidelberg 2000)CrossRefGoogle Scholar
  143. 4.121
    R.B. Bilborn, J.V. Sweedler, P.M. Epperson, M.B. Denton: Charge transfer device detectors for optical spectroscopy. Appl. Spectrosc. 41, 1114 (1987)ADSCrossRefGoogle Scholar
  144. 4.122
    I. Nin, Y. Talmi: CCD detectors record multiple spectra simultaneously. Laser Focus 27, 111 (August 1991)Google Scholar
  145. 4.123
    H.R. Zwicker: Photoemissive detectors. In Optical and Infrared Detectors, 2nd edn., ed. by J. Keyes, Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)Google Scholar
  146. 4.124
    C. Gosh: Photoemissive materials. SPIE Proc. 346, 62 (1982)CrossRefGoogle Scholar
  147. 4.125
    R.L. Bell: Negative Electron Affinity Devices (Clarendon, Oxford 1973)Google Scholar
  148. 4.126
    L.E. Wood, T.K. Gray, M.C. Thompson: Technique for the measurement of pho-tomultiplier transit time variation. Appl. Opt. 8, 2143 (1969)ADSCrossRefGoogle Scholar
  149. 4.127
    J.D. Rees, M.P. Givens: Variation of time of flight of electrons through a pho-tomultiplier. J. Opt. Soc. Am. 56, 93 (1966)ADSCrossRefGoogle Scholar
  150. 4.128
    (a) B. Sipp, J.A. Miehe, R. Lopes Delgado: Wavelength dependence of the time resolution of high speed photomultipliers used in single-photon timing experiments. Opt. Commun. 16, 202 (1976)ADSCrossRefGoogle Scholar
  151. (b).
    G. Beck: Operation of a 1P28 photomultipier with subnanosecond response time. Rev. Sci. Instrum. 47, 539 (1976)ADSGoogle Scholar
  152. (c).
    B.C. Mongan (Ed.): Adv. Electronics and Electron Physics, Vol 74 (Academic, London 1988)Google Scholar
  153. 4.129
    A. van der Ziel: Noise in Measurements (Wiley, New York 1976)Google Scholar
  154. 4.130
    A.T. Young: Undesirable effects of cooling photomultipliers. Rev. Sci. Instrum. 38, 1336 (1967)ADSCrossRefGoogle Scholar
  155. 4.131
    J. Sharpe, C. Eng: Dark Current in Photomultiplier Tubes (EMI Ltd. information document, ref. R-P021470)Google Scholar
  156. 4.132
    Phototubes and Photocells. In: An Introduction to the Photomultiplier (RCA Manual, EMI Ltd. information sheet, 1966)Google Scholar
  157. 4.133
    E.L. Dereniak, D.G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)Google Scholar
  158. 4.134
    R.W. Boyd: Radiometry and the Detection of Optical Radiation (Wiley, New York 1983)Google Scholar
  159. 4.135
    G. Pietri: Towards picosecond resolution. Contribution of microchannel electron multipiers to vacuum tube design. IEEE Trans. NS-22, 2084 (1975);ADSGoogle Scholar
  160. J.L. Wiza: MicroChannel plate detectors (Galileo information sheet, Sturbridge, MA, 1978)Google Scholar
  161. 4.136
    L.M. Bieberman, S. Nudelman (Eds.): Photoelectronic Imaging Devices (Plenum, New York 1971); LP. Csonba (Ed.): Image Intensification, SPIE Proc. 1072 (1989)Google Scholar
  162. 4.137 Proc. Topical Meeting on Quantum-Limited Imaging and Image Processing (Opt. Soc. Am., Washington, DC 1986)Google Scholar
  163. 4.138
    T.P. McLean, P. Schagen (Eds.): Electronic Imaging (Academic, London 1979)Google Scholar
  164. 4.139
    H.K. Pollehn: ‘Image intensifiers’. In: [4.1], Vol.6 (1980) p.393Google Scholar
  165. 4.140
    S. Jeffers, W. Weller: ‘Image intensifier optical multichannel analyser for astronomical spectroscopy’. In: Adv. Electronics and Electron Phys. B 40 (Academic, New York 1976) p. 887Google Scholar
  166. 4.141
    L. Perko, J. Haas, D. Osten: Cooled and intensified array detectors for optical spectroscopy. SPIE Proc. 116, 64 (1977)CrossRefGoogle Scholar
  167. 4.142
    J.L. Hall: ‘Arrays and charge coupled devices’. In: [4.1], Vol.8 (1980) p. 349Google Scholar
  168. 4.143
    J.L. Weber: Gated optical multichannel analyzer for time resolved spectroscopy. SPIE Proc. 82, 60 (1976)ADSCrossRefGoogle Scholar
  169. 4.144
    R.G. Tull: A comparison of photon-counting and current measuring techniques in spectrometry of faint sources. Appl. Opt. 7, 2023 (1968)ADSCrossRefGoogle Scholar
  170. 4.145
    J.F. James: On the use of a photomultiplier as a photon counter. Monthly Notes R. Astron. Soc. 137, 15 (1967)ADSGoogle Scholar
  171. 4.146
    D.V. O’Connor, D. Phillips: Time-Correlated Photon-Counting (Academic, London 1984);Google Scholar
  172. G.F. Knoll: Radiation Detectors and Measurement (Wiley, New York 1979)Google Scholar
  173. 4.147
    P.W. Kruse: ‘The photon detection process’. In: Optical and Infrared Detectors, 2nd edn., ed. by J.J. Keyes, Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)Google Scholar
  174. 4.148 Signal Averagers. (Information sheet, issued by Princeton Appl. Res., Princeton, NJ, 1978)Google Scholar
  175. 4.149 Information sheet on transient recorders, Biomation, Palo Alto, CAGoogle Scholar
  176. 4.150
    C. Morgan: Digital signal processing. Laser Focus 13, 52 (Nov. 1977)ADSGoogle Scholar
  177. 4.151
    Handshake: Information sheet on waveform digitizing instruments (Tektronic, Beaverton, OR 1979)Google Scholar
  178. 4.152 Hamamatsu photonics information sheet (February 1989)Google Scholar
  179. 4.153
    H. Mark: Principles and Practice of Spectroscopic Calibration (Wiley, New York 1991)Google Scholar
  180. 4.154
    A.C.S. van Heel (Ed.): Advanced Optical Techniques (North-Holland, Amsterdam 1967)Google Scholar
  181. 4.155
    W. Göpel, J. Hesse, J.N. Zemel (Eds.): Sensors, A Comprehensive Survey (Wiley-VCH, Weinheim 1992)Google Scholar
  182. 4.156
    D. Dragoman, M. Dragoman: Advanced Optical Devices (Springer, Heidelberg 1999)CrossRefGoogle Scholar
  183. 4.157
    F. Grum, R.L. Becherer (Eds.): Optical Radiation Measurements, Vols. I, II (Academic, New York 1979, 1980)Google Scholar
  184. 4.158
    C.H. Lee: Picosecond Optoelectronics Devices (Academic, New York 1984)Google Scholar
  185. 4.159
    The Photonics and Application Handbook (Laurin, Pittsfield, MA 1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations