Skip to main content

Spectroscopic Instrumentation

  • Chapter
Laser Spectroscopy

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

This chapter is devoted to a discussion of instruments and techniques that are of fundamental importance for the measurements of wavelengths and line profiles, or for the sensitive detection of radiation. The optimum selection of proper equipment or the application of a new technique is often decisive for the success of an experimental investigation. Since the development of spectroscopic instrumentation has shown great progress in recent years, it is most important for any spectroscopist to be informed about the state-of-the-art regarding sensitivity, spectral resolving power, and signal-to-noise ratios attainable with modern equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kingslake, B.J. Thompson (Eds.): Applied Optics and Optical Engineering, Vols. 1–10 (Academic, New York 1969–1985);

    Google Scholar 

  2. M. Bass, E. van Skryland, D. Williams, W. Wolfe (Eds.): Handbook of Optics, Vols. I and II (McGraw-Hill, New York 1995)

    Google Scholar 

  3. E. Wolf (Ed.): Progress in Optics, Vols. 1–42 (North-Holland, Amsterdam 1961–2001)

    Google Scholar 

  4. M. Born, E. Wolf: Principles of Optics, 4th edn. (Pergamon, Oxford 1970)

    Google Scholar 

  5. A.R Thorne, U. Litzen, S. Johansson: Spectrophysics, 2nd edn. (Springer, Berlin 1999);

    Google Scholar 

  6. G.L. Clark (Ed.): The Encyclopedia of Spectroscopy (Reinhold, New York 1960)

    Google Scholar 

  7. L. Levi: Applied Optics (Wiley, London 1980);

    Google Scholar 

  8. D.F. Gray (Ed.): Am. Inst. Phys. Handbook (McGraw-Hill, New York 1980)

    Google Scholar 

  9. R.D. Guenther: Modern Optics (Wiley, New York 1990)

    Google Scholar 

  10. F. Graham-Smith, T.A. King: Optics and Photonics (Wiley, London 2000)

    Google Scholar 

  11. H. Lipson: Optical Physics, 3rd edn. (Cambridge University Press, Cambridge 1995)

    Book  MATH  Google Scholar 

  12. K.I. Tarasov: The Spectroscope (Hilger, London 1974)

    Google Scholar 

  13. S.P. Davis: Diffraction Grating Spectrographs (Holt, Rinehard & Winston, New York 1970)

    Google Scholar 

  14. A.B. Schafer, L.R. Megil, L. Dropleman: Optimization of the Czerny-Turner spectrometer. J. Opt. Soc. Am. 54, 879 (1964)

    Article  ADS  Google Scholar 

  15. Handbook of Diffraction Gratings, Ruled and Holographic (Jobin Yvon Optical Systems, Metuchen, NJ 1970) Bausch and Lomb Diffraction Grating Handbook (Bausch & Lomb, Rochester, NY 1970)

    Google Scholar 

  16. G.W. Stroke: ‘Diffraction gratings’. In: Handbuch der Physik, Vol. 29, ed. by S. Flügge (Springer, Berlin, Heidelberg 1967)

    Google Scholar 

  17. M.C. Hutley: Diffraction Gratings (Academic, London 1982);

    Google Scholar 

  18. E. Popov, E.G. Loewen: Diffraction Gratings and Applications (Dekker, New York 1997)

    Google Scholar 

  19. See, for example, E. Hecht: Optics, 4th edn. (Addison-Wesley, London 2002)

    Google Scholar 

  20. G. Schmahl, D. Rudolph: ‘Holographic diffraction gratings’. In: Progress in Optics 14, 195 (North-Holland, Amsterdam 1977)

    Google Scholar 

  21. E. Loewen: ‘Diffraction gratings: ruled and holographic’. In: Applied Optics and Optical Engineering, Vol. 9 (Academic, New York 1980)

    Google Scholar 

  22. M.D. Perry, et al.: High-efficiency multilayer dielectric diffraction gratings. Opt. Lett. 20, 940 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  23. Basic treatments of interferometers may be found in general textbooks on optics. A more detailed discussion has, for instance, been given in S. Tolansky: An Introduction to Interferometry (Longman, London 1973);

    Google Scholar 

  24. W.H. Steel: Interferometry (Cambridge Univ. Press, Cambridge 1967);

    Google Scholar 

  25. J. Dyson: Interferometry (Machinery Publ., Brighton 1970);

    Google Scholar 

  26. M. Francon: Optical Interferometry (Academic, New York 1966)

    Google Scholar 

  27. H. Polster, J. Pastor, R.M. Scott, R. Crane, P.H. Langenbeck, R. Pilston, G. Steingerg: New developments in interferometry. Appl. Opt. 8, 521 (1969)

    Article  ADS  Google Scholar 

  28. K.M. Baird, G.R. Hanes: ‘Interferometers’. In: [4.1], Vol.4, pp.309–362

    Google Scholar 

  29. P. Hariharan: Optical Interferometry (Academic, New York 1986)

    Google Scholar 

  30. W.S. Gornall: The world of Fabry-Perots. Laser Appl. 2, 47 (1983)

    Google Scholar 

  31. M. Francon, J. Mallick: Polarisation Interferometers (Wiley, London 1971)

    Google Scholar 

  32. H. Welling, B. Wellingehausen: High resolution Michelson interferometer for spectral investigations of lasers. Appl. Opt. 11, 1986 (1972)

    Article  ADS  Google Scholar 

  33. P.R. Saulson: Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore 1994)

    Book  Google Scholar 

  34. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  35. A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, R.-H. Rinkleff: White-light cavities, atomic phase coherence and gravitational wave detectors. Opt. Commun. 134, 431 (1997)

    Article  ADS  Google Scholar 

  36. R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972)

    Google Scholar 

  37. P. Griffiths, J.A. de Haseth: Fourier-Transform Infrared Spectroscopy (Wiley, New York 1986)

    Google Scholar 

  38. V. Grigull, H. Rottenkolber: Two beam interferometer using a laser. J. Opt. Soc. Am. 57, 149 (1967);

    Article  ADS  Google Scholar 

  39. W. Schumann, M. Dubas: Holographic Interferometry, Springer Ser. Opt. Sci., Vol. 16 (Springer, Berlin, Heidelberg 1979); W. Schumann, J.-P Zürcher, D. Cuche: Holography and Deformation Analysis, Springer Ser. Opt. Sci., Vol.46 (Springer, Berlin, Heidelberg 1986);

    Google Scholar 

  40. W. Marlow: Hakenmethode. Appl. Opt. 6, 1715 (1967)

    Article  ADS  Google Scholar 

  41. I. Meroz (Ed.): Optical Transition Probabilities. A Representative Collection of Russian Articles (Israel Program for Scientific Translations, Jerusalem 1962)

    Google Scholar 

  42. J.P. Marioge, B. Bonino: Fabry-Perot interferometer surfacing. Opt. Laser Technol. 4, 228 (1972)

    Article  ADS  Google Scholar 

  43. M. Hercher: Tilted etalons in laser resonators. Appl. Opt. 8, 1103 (1969)

    Article  ADS  Google Scholar 

  44. W.R. Leeb: Losses introduced by tilting intracavity etalons. Appl. Phys. 6, 267 (1975)

    Article  ADS  Google Scholar 

  45. W. Demtröder, M. Stock: Molecular constants and potential curves of Na2 from laser-induced fluorescence. J. Mol. Spectrosc. 55, 476 (1975)

    Article  ADS  Google Scholar 

  46. P. Connes: L’etalon de Fabry-Perot spherique. Phys. Radium 19, 262 (1958);

    Article  Google Scholar 

  47. P. Connes: Quantum Electronics and Coherent Light, ed. by PH. Miles (Academic, New York 1964) p. 198

    Google Scholar 

  48. D.A. Jackson: The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams. Proc. Roy. Soc. (London) A 263, 289 (1961)

    Article  ADS  Google Scholar 

  49. J.R. Johnson: A high resolution scanning confocal interferometer. Appl. Opt. 7, 1061 (1968)

    Article  ADS  Google Scholar 

  50. M. Hercher: The spherical mirror Fabry-Perot interferometer. Appl. Opt. 7, 951 (1968)

    Article  ADS  Google Scholar 

  51. R.L. Fork, D.R. Herriot, H. Kogelnik: A scanning spherical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)

    Article  ADS  Google Scholar 

  52. F. Schmidt-Kaler, D. Leibfried, M. Weitz, T.W. Hänsch: Precision measurements of the isotope shift of the ls-2s transition of atomic hydrogen and deuterium. Phys. Rev. Lett. 70, 2261 (1993)

    Article  ADS  Google Scholar 

  53. J.R. Johnson: A method for producing precisely confocal resonators for scanning interferometers. Appl. Opt. 6, 1930 (1967)

    Article  ADS  Google Scholar 

  54. P. Hariharan: Optical Interferometry (Academic, New York 1985); G.W. Hopkins (Ed.): Interferometry. SPIE Proc. 192 (1979); R.J. Pryputniewicz (Ed.): Industrial Interferometry. SPIE Proc. 746 (1987); R.J. Pryputniewicz (Ed.): Laser Interferometry. SPIE Proc. 1553 (1991);

    Google Scholar 

  55. J.D. Briers: Interferometric testing of optical systems and components. Opt. Laser Techn. (February 1972) p. 28

    Google Scholar 

  56. J.M. Vaughan: The Fabry-Perot Interferometer (Hilger, Bristol 1989);

    Google Scholar 

  57. Z. Jaroscewicz, M. Pluta (Eds.): Interferometry 89: 100 Years after Michelson: State of the Art and Applications. SPIE Proc. 1121 (1989)

    Google Scholar 

  58. J. McDonald: Metal Dielectric Multilayer (Hilger, London 1971)

    Google Scholar 

  59. A. Thelen: Design of Optical Interference Coatings (McGraw-Hill, New York 1988)

    Google Scholar 

  60. Z. Knittl: Optics of Thin Films (Wiley, New York 1976)

    Google Scholar 

  61. V.R. Costich: ‘Multilayer dielectric coatings’. In: Handbook of Lasers, ed. by R.J. Pressley (CRC, Cleveland, Ohio 1972)

    Google Scholar 

  62. H.A. MacLeod (Ed.): Optical interference coatings. Appl. Opt. 28, 2697–2974 (1989); R.E. Hummel, K.H. Guenther (Eds.): Optical Properties, Vol.1: Thin Films for Optical Coatings (CRC, Cleveland, Ohio 1995)

    Google Scholar 

  63. A. Musset, A. Thelen: ‘Multilayer antireflection coatings’. In: Progress in Optics 3, 203 (North-Holland, Amsterdam 1970)

    Google Scholar 

  64. J.T. Cox, G. Hass: In: Physics of Thin Films, Vol. 2, ed. by G. Hass (Academic, New York 1964)

    Google Scholar 

  65. E. Delano, R.J. Pegis: ‘Methods of synthesis for dielectric multilayer filters’. In: Progress in Optics, Vol. 7, 69 (North-Holland, Amsterdam 1969)

    Google Scholar 

  66. H.A. Macleod: Thin Film Optical Filter, 3rd edn. (Inst. of Physics Publ., London 2001)

    Book  Google Scholar 

  67. J. Evans: The birefringent filter. J. Opt. Soc. Am. 39, 229 (1949)

    Article  ADS  Google Scholar 

  68. H. Walther, J.L. Hall: Tunable dye laser with narrow spectral output. Appl. Phys. Lett. 17, 239 (1970)

    Article  ADS  Google Scholar 

  69. M. Okada, S. Iliri: Electronic tuning of dye lasers by an electro-optic birefringent Fabry-Perot etalon. Opt. Commun. 14, 4 (1975)

    Article  ADS  Google Scholar 

  70. B.H. Billings: The electro-optic effect in uniaxial crystals of the type XH2PO4. J. Opt. Soc. Am. 39, 797 (1949)

    Article  ADS  Google Scholar 

  71. R.L. Fork, D.R. Herriot, H. Kogelnik: A scanning spherical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)

    Article  ADS  Google Scholar 

  72. V.G. Cooper, B.K. Gupta, A.D. May: Digitally pressure scanned Fabry-Perot interferometer for studying weak spectral lines. Appl. Opt. 11, 2265 (1972)

    Article  ADS  Google Scholar 

  73. J.M. Telle, C.L. Tang: Direct absorption spectroscopy, using a rapidly tunable cw-dye laser. Opt. Commun. 11, 251 (1974)

    Article  ADS  Google Scholar 

  74. P. Cerez, S.J. Bennet: New developments in iodine-stabilized HeNe lasers. IEEE Trans. IM-27, 396 (1978)

    Google Scholar 

  75. K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, G.W. Day, R.L. Barger, J.L. Hall: Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 29, 1346 (1972)

    Article  ADS  Google Scholar 

  76. K.M. Evenson, D.A. Jennings, F.R. Petersen, J.S. Wells: ‘Laser frequency measurements: a review, limitations and extension to 197 THz’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  77. K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Davidson, G.W. Day, R.L. Barger, J.L. Hall: The speed of light. Phys. Rev. Lett. 29, 1346 (1972)

    Article  ADS  Google Scholar 

  78. A. DeMarchi (Ed.): Frequency Standards and Metrology (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  79. P.R. Bevington: Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York 1969)

    Google Scholar 

  80. J.R. Taylor: An Introduction to Error Analysis (Univ. Science Books, Mill Valley 1982)

    MATH  Google Scholar 

  81. J.L. Hall, S.A. Lee: Interferometric real time display of CW dye laser wavelength with sub-Doppler accuracy. Appl. Phys. Lett. 29, 367 (1976)

    Article  ADS  Google Scholar 

  82. J.J. Snyder: ‘Fizeau wavelength meter’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p. 419

    Google Scholar 

  83. R.L. Byer, J. Paul, M.D. Duncan: ‘A wavelength meter’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p. 414

    Google Scholar 

  84. A. Fischer, H. Kullmer, W. Demtröder: Computer-controlled Fabry-Perot-wavemeter. Opt. Commun. 39, 277 (1981)

    Article  ADS  Google Scholar 

  85. N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya: High precision wavelength meter with Fabry-Perot optics. Appl. Phys. 25, 311 (1981)

    Article  ADS  Google Scholar 

  86. F.V. Kowalski, R.E. Teets, W. Demtröder, A.L. Schawlow: An improved wavemeter for CW lasers. J. Opt. Soc. Am. 68, 1611 (1978)

    Article  ADS  Google Scholar 

  87. R. Best: Theorie und Anwendung des Phase-Locked Loops (AT Fachverlag, Stuttgart 1976)

    Google Scholar 

  88. F.M. Gardner: Phase Lock Techniques (Wiley, New York 1966);

    Google Scholar 

  89. F.M. Gardner: Phase-Locked Loop Data Book (Motorola Semiconductor Prod., Inc. 1973)

    Google Scholar 

  90. B. Edlen: Dispersion of standard air. J. Opt. Soc. Am. 43, 339 (1953)

    Article  ADS  Google Scholar 

  91. J.C. Owens: Optical refractive index of air: Dependence on pressure, temperature and composition. Appl. Opt. 6, 51 (1967)

    Article  ADS  Google Scholar 

  92. R. Castell, W. Demtröder, A. Fischer, R. Kullmer, K. Wickert: The accuracy of laser wavelength meters. Appl. Phys. B 38, 1 (1985)

    Article  ADS  Google Scholar 

  93. J. Cachenaut, C. Man, P. Cerez, A. Brillet, F. Stoeckel, A. Jourdan, F. Hartmann: Description and accuracy tests of an improved lambdameter. Rev. Phys. Appl. 14, 685 (1979)

    Article  Google Scholar 

  94. J. Viqué, B. Girard: A systematic error of Michelson’s type lambdameter. Rev. Phys. Appl. 21, 463 (1986)

    Article  Google Scholar 

  95. J.J. Snyder: ‘An ultrahigh resolution frequency meter’. Proc. 35th Ann. Freq. Control USAERADCOM May 1981. Appl. Opt. 19, 1223 (1980)

    Article  ADS  Google Scholar 

  96. P. Juncar, J. Pinard: Instrument to measure wavenumbers of CW and pulsed laser lines: The sigma meter. Rev. Sci. Instrum. 53, 939 (1982);

    Article  ADS  Google Scholar 

  97. P. Jacquinot, P. Juncar, J. Pinard: ‘Motionless Michelson for high precision laser frequency measurements’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p.417

    Google Scholar 

  98. J.J. Snyder: Fizeau wavemeter. SPIE Proc. 288, 258 (1981)

    Article  Google Scholar 

  99. M.B. Morris, T.J. McIllrath, J. Snyder: Fizeau wavemeter for pulsed laser wavelength measurement. Appl. Opt. 23, 3862 (1984)

    Article  ADS  Google Scholar 

  100. J.L. Gardner: Compact Fizeau wavemeter. Appl. Opt. 24, 3570 (1985)

    Article  ADS  Google Scholar 

  101. J.L. Gardner: Wavefront curvature in a Fizeau wavemeter. Opt. Lett. 8, 91 (1983)

    Article  ADS  Google Scholar 

  102. 4.86 J.J. Keyes (Ed.): Optical and Infrared Detectors, 2nd edn., Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  103. P.N. Dennis: Photodetectors (Plenum, New York 1986)

    Book  Google Scholar 

  104. M. Bleicher: Halbleiter-Optoelektronik (Hüthig, Heidelberg 1976)

    Google Scholar 

  105. E.L. Dereniak, G.D. Boreman: Infrared Detectors and Systems (Wiley, New York 1996)

    Google Scholar 

  106. G.H. Rieke: Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge 1994)

    Google Scholar 

  107. J. Wilson, J.F.B. Hawkes: Optoelectronics (Prentice Hall, London 1983)

    Google Scholar 

  108. R. Paul: Optoelektronische Halbleiterbauelemente (Teubner, Stuttgart 1985)

    Google Scholar 

  109. T.S. Moss, G.J. Burell, B. Ellis: Semiconductor Opto-Electronics (Butterworth, London 1973)

    Google Scholar 

  110. R.W. Boyd: Radiometery and the Detection of Optical Radiation (Wiley, New York 1983)

    Google Scholar 

  111. E.L. Dereniak, D.G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)

    Google Scholar 

  112. F. Stöckmann: Photodetectors, their performance and limitations. Appl. Phys. 7, 1 (1975)

    Article  ADS  Google Scholar 

  113. F. Grum, R.L. Becher: Optical Radiation Measurements, Vols. 1 and 2 (Academic, New York 1979 and 1980)

    Google Scholar 

  114. 4.98 R.H. Kingston: Detection of Optical and Infrared Radiation, Springer Ser. Opt. Sci., Vol. 10 (Springer, Berlin, Heidelberg 1978)

    Google Scholar 

  115. E.H. Putley: ‘Thermal detectors’. In: [4.86], p. 71

    Google Scholar 

  116. T.E. Gough, R.E. Miller, G. Scoles: Infrared laser spectroscopy of molecular beams. Appl. Phys. Lett. 30, 338 (1977)

    Article  ADS  Google Scholar 

  117. M. Zen: Cryogenic bolometers, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, New York 1988) Vol. 1

    Google Scholar 

  118. D. Bassi, A. Boschetti, M. Scotoni, M. Zen: Molecular beam diagnostics by means of fast superconducting bolometer. Appl. Phys. B 26, 99 (1981)

    Article  ADS  Google Scholar 

  119. J. Clarke, P.L. Richards, N.H. Yeh: Composite superconducting transition edge bolometer. Appl. Phys. Lett. B 30, 664 (1977)

    Article  ADS  Google Scholar 

  120. M.J.E. Golay: A Pneumatic Infra-Red Detector. Rev. Scient. Instrum. 18, 357 (1947)

    Article  ADS  Google Scholar 

  121. B. Tiffany: Introduction and review of pyroelectric detectors. SPIE Proc. 62, 153 (1975)

    Article  ADS  Google Scholar 

  122. C.B. Boundy, R.L. Byer: Subnanosecond pyroelectric detector. Appl. Phys. Lett. 21, 10 (1972)

    Google Scholar 

  123. L.E. Ravich: Pyroelectric detectors and imaging. Laser Focus 22, 104 (1986)

    Google Scholar 

  124. H. Melchior: ‘Demodulation and photodetection techniqes’. In: Laser Handbook, Vol. I, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 725

    Google Scholar 

  125. H. Melchior: Sensitive high speed photodetectors for the demodulation of visible and near infrared light. J. Lumin. 7, 390 (1973)

    Article  Google Scholar 

  126. D. Long: ‘Photovoltaic and photoconductive infrared detectors’. In: [4.86], p. 101

    Google Scholar 

  127. E. Sakuma, K.M. Evenson: Characteristics of tungsten nickel point contact diodes used as a laser harmonic generation mixers. IEEE J. QE-10, 599 (1974)

    Article  Google Scholar 

  128. K.M. Evenson, M. Ingussio, D.A. Jennings: Point contact diode at laser frequencies. J. Appl. Phys. 57, 956 (1985);

    Article  ADS  Google Scholar 

  129. H.D. Riccius, K.D. Siemsen: Point-contact diodes. Appl. Phys. A 35, 67 (1984);

    Article  ADS  Google Scholar 

  130. H. Rösser: Heterodyne spectroscopy for submillimeter and far-infrared wavelengths. Infrared Phys. 32, 385 (1991)

    Article  Google Scholar 

  131. H.-U. Daniel, B. Maurer, M. Steiner: A broad band Schottky point contact mixer for visible light and microwave harmonics. Appl. Phys. B 30, 189 (1983);

    Article  ADS  Google Scholar 

  132. T.W. Crowe: Ga As Schottky barrier mixer diodes for the frequency range from 1–10 THz. Int. J. IR and Millimeter Waves 10, 765 (1989);

    Article  ADS  Google Scholar 

  133. H.P. Röser, R.V. Titz, G.W. Schwab, M.F. Kimmitt: Current-frequency characteristics of submicron Ga As Schottky barrier diodes with femtofarad capacitances. J. Appl. Phys. 72, 3194 (1992)

    Article  ADS  Google Scholar 

  134. F. Capasso: Band-gap engineering via graded-gap structure: Applications to novel photodetectors. J. Vac. Sci. Techn. B12, 457 (1983)

    Google Scholar 

  135. 4.114 F. Capasso (Ed.): Physics of Quantum Electron Devices, Springer Ser. Electron. Photon., Vol.28 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  136. F. Capasso: Multilayer avalanche photodiodes and solid state photomultipliers. Laser Focus 20, 84 (July 1984)

    Google Scholar 

  137. G.A. Walter, E.L. Dereniak: Photodetectors for focal plane arrays. Laser Focus 22, 108 (March 1986)

    Google Scholar 

  138. A. Tebo: IR detector technology. Arrays. Laser Focus 20, 68 (July 1984); E.L. Dereniak, R.T. Sampson (Eds.): Infrared Detectors, Focal Plane Arrays and Imaging Sensors, SPIE Proc. 1107 (1989); E.L. Dereniak (Ed.): Infrared Detectors and Arrays. SPIE Proc. 930 (1988)

    Google Scholar 

  139. D.F. Barbe (Ed.): Charge-Coupled Devices, Topics Appl. Phys., Vol. 38 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  140. see special issue on CCDs of Berkeley Lab 23, 3 (Fall 2000) and G.C. Holst: CCD Arrays, Cameras and Display (Sofitware, ISBN 09640000024, 2000)

    Google Scholar 

  141. K.P. Proli, J.M. Nivet, C. Voland: Enhancement of the dynamic range of the detected intensity in an optical measurement system by a three channel technique. Appl. Opt. 41, 130 (2002)

    Article  ADS  Google Scholar 

  142. H. Zimmermann: Integrated Silicon Optoelectronics (Springer, Berlin, Heidelberg 2000)

    Book  Google Scholar 

  143. R.B. Bilborn, J.V. Sweedler, P.M. Epperson, M.B. Denton: Charge transfer device detectors for optical spectroscopy. Appl. Spectrosc. 41, 1114 (1987)

    Article  ADS  Google Scholar 

  144. I. Nin, Y. Talmi: CCD detectors record multiple spectra simultaneously. Laser Focus 27, 111 (August 1991)

    Google Scholar 

  145. H.R. Zwicker: Photoemissive detectors. In Optical and Infrared Detectors, 2nd edn., ed. by J. Keyes, Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  146. C. Gosh: Photoemissive materials. SPIE Proc. 346, 62 (1982)

    Article  Google Scholar 

  147. R.L. Bell: Negative Electron Affinity Devices (Clarendon, Oxford 1973)

    Google Scholar 

  148. L.E. Wood, T.K. Gray, M.C. Thompson: Technique for the measurement of pho-tomultiplier transit time variation. Appl. Opt. 8, 2143 (1969)

    Article  ADS  Google Scholar 

  149. J.D. Rees, M.P. Givens: Variation of time of flight of electrons through a pho-tomultiplier. J. Opt. Soc. Am. 56, 93 (1966)

    Article  ADS  Google Scholar 

  150. (a) B. Sipp, J.A. Miehe, R. Lopes Delgado: Wavelength dependence of the time resolution of high speed photomultipliers used in single-photon timing experiments. Opt. Commun. 16, 202 (1976)

    Article  ADS  Google Scholar 

  151. G. Beck: Operation of a 1P28 photomultipier with subnanosecond response time. Rev. Sci. Instrum. 47, 539 (1976)

    ADS  Google Scholar 

  152. B.C. Mongan (Ed.): Adv. Electronics and Electron Physics, Vol 74 (Academic, London 1988)

    Google Scholar 

  153. A. van der Ziel: Noise in Measurements (Wiley, New York 1976)

    Google Scholar 

  154. A.T. Young: Undesirable effects of cooling photomultipliers. Rev. Sci. Instrum. 38, 1336 (1967)

    Article  ADS  Google Scholar 

  155. J. Sharpe, C. Eng: Dark Current in Photomultiplier Tubes (EMI Ltd. information document, ref. R-P021470)

    Google Scholar 

  156. Phototubes and Photocells. In: An Introduction to the Photomultiplier (RCA Manual, EMI Ltd. information sheet, 1966)

    Google Scholar 

  157. E.L. Dereniak, D.G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)

    Google Scholar 

  158. R.W. Boyd: Radiometry and the Detection of Optical Radiation (Wiley, New York 1983)

    Google Scholar 

  159. G. Pietri: Towards picosecond resolution. Contribution of microchannel electron multipiers to vacuum tube design. IEEE Trans. NS-22, 2084 (1975);

    ADS  Google Scholar 

  160. J.L. Wiza: MicroChannel plate detectors (Galileo information sheet, Sturbridge, MA, 1978)

    Google Scholar 

  161. L.M. Bieberman, S. Nudelman (Eds.): Photoelectronic Imaging Devices (Plenum, New York 1971); LP. Csonba (Ed.): Image Intensification, SPIE Proc. 1072 (1989)

    Google Scholar 

  162. 4.137 Proc. Topical Meeting on Quantum-Limited Imaging and Image Processing (Opt. Soc. Am., Washington, DC 1986)

    Google Scholar 

  163. T.P. McLean, P. Schagen (Eds.): Electronic Imaging (Academic, London 1979)

    Google Scholar 

  164. H.K. Pollehn: ‘Image intensifiers’. In: [4.1], Vol.6 (1980) p.393

    Google Scholar 

  165. S. Jeffers, W. Weller: ‘Image intensifier optical multichannel analyser for astronomical spectroscopy’. In: Adv. Electronics and Electron Phys. B 40 (Academic, New York 1976) p. 887

    Google Scholar 

  166. L. Perko, J. Haas, D. Osten: Cooled and intensified array detectors for optical spectroscopy. SPIE Proc. 116, 64 (1977)

    Article  Google Scholar 

  167. J.L. Hall: ‘Arrays and charge coupled devices’. In: [4.1], Vol.8 (1980) p. 349

    Google Scholar 

  168. J.L. Weber: Gated optical multichannel analyzer for time resolved spectroscopy. SPIE Proc. 82, 60 (1976)

    Article  ADS  Google Scholar 

  169. R.G. Tull: A comparison of photon-counting and current measuring techniques in spectrometry of faint sources. Appl. Opt. 7, 2023 (1968)

    Article  ADS  Google Scholar 

  170. J.F. James: On the use of a photomultiplier as a photon counter. Monthly Notes R. Astron. Soc. 137, 15 (1967)

    ADS  Google Scholar 

  171. D.V. O’Connor, D. Phillips: Time-Correlated Photon-Counting (Academic, London 1984);

    Google Scholar 

  172. G.F. Knoll: Radiation Detectors and Measurement (Wiley, New York 1979)

    Google Scholar 

  173. P.W. Kruse: ‘The photon detection process’. In: Optical and Infrared Detectors, 2nd edn., ed. by J.J. Keyes, Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  174. 4.148 Signal Averagers. (Information sheet, issued by Princeton Appl. Res., Princeton, NJ, 1978)

    Google Scholar 

  175. 4.149 Information sheet on transient recorders, Biomation, Palo Alto, CA

    Google Scholar 

  176. C. Morgan: Digital signal processing. Laser Focus 13, 52 (Nov. 1977)

    ADS  Google Scholar 

  177. Handshake: Information sheet on waveform digitizing instruments (Tektronic, Beaverton, OR 1979)

    Google Scholar 

  178. 4.152 Hamamatsu photonics information sheet (February 1989)

    Google Scholar 

  179. H. Mark: Principles and Practice of Spectroscopic Calibration (Wiley, New York 1991)

    Google Scholar 

  180. A.C.S. van Heel (Ed.): Advanced Optical Techniques (North-Holland, Amsterdam 1967)

    Google Scholar 

  181. W. Göpel, J. Hesse, J.N. Zemel (Eds.): Sensors, A Comprehensive Survey (Wiley-VCH, Weinheim 1992)

    Google Scholar 

  182. D. Dragoman, M. Dragoman: Advanced Optical Devices (Springer, Heidelberg 1999)

    Book  Google Scholar 

  183. F. Grum, R.L. Becherer (Eds.): Optical Radiation Measurements, Vols. I, II (Academic, New York 1979, 1980)

    Google Scholar 

  184. C.H. Lee: Picosecond Optoelectronics Devices (Academic, New York 1984)

    Google Scholar 

  185. The Photonics and Application Handbook (Laurin, Pittsfield, MA 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2003). Spectroscopic Instrumentation. In: Laser Spectroscopy. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05155-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05155-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05157-3

  • Online ISBN: 978-3-662-05155-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics