Advertisement

Widths and Profiles of Spectral Lines

  • Wolfgang Demtröder
Chapter
  • 1.4k Downloads
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

Spectral lines in discrete absorption or emission spectra are never strictly monochromatic. Even with the very high resolution of interferometers, one observes a spectral distribution I(v) of the absorbed or emitted intensity around the central frequency v 0 = (E i - E k )/h corresponding to a molecular transition with the energy difference ΔE = E i - E k between upper and lower levels. The function I(v) in the vicinity of v 0 is called the line profile (Fig.3.1). The frequency interval δv = |v 2 - v 1| between the two frequencies v 1 and v 2 for which I(v 1) = I(v 2) = I(v 0)/2 is the full-width at half-maximum of the line (FWHM), often shortened to the linewidth or halfwidth of the spectral line.

Keywords

Spectral Line Line Profile Inelastic Collision Elastic Collision Line Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    I.I. Sobelman, L.A. Vainstein, E.A. Yukov: Excitation of Atoms and Broadening of Spectral Lines, 2nd edn., Springer Ser. Atoms Plasmas, Vol. 15 (Springer, Berlin, Heidelberg 1995)CrossRefGoogle Scholar
  2. 3.2
    R.G. Breene: Theories of Spectral Line Shapes (Wiley, New York 1981)Google Scholar
  3. 3.3
    K. Burnett: Lineshapes Laser Spectroscopy (Cambridge University Press, Cambridge 2000)Google Scholar
  4. 3.4
    See, for instance, Proc. Int. Conf. on Spectral Line Shapes, Vol. 1, ed. by B. Wende (De Gruyter, Berlin 1981);Google Scholar
  5. 3.4a
    Vol.2, 5th Int. Conf., Boulder 1980, ed. by K. Burnett (De Gruyter, Berlin 1983);Google Scholar
  6. 3.4b
    Vol. 3, 7th Int. Conf., Aussois 1984, ed. by F. Rostas (De Gruyter, Berlin 1985);Google Scholar
  7. 3.4c
    Vol.4, 8th Int. Conf., Williamsburg 1986, ed. by R.J. Exton (Deepak Publ., Hampton, VA 1987);Google Scholar
  8. 3.4d
    Vol.5, 9th Int. Conf., Torun, Poland 1988, ed. by J. Szudy (Ossolineum, Wroclaw 1989);Google Scholar
  9. 3.4e
    Vol.6, Austin 1990, ed. by L. Frommhold, J.W. Keto (AIP Conf. Proc. No. 216, 1990);Google Scholar
  10. 3.4f
    Vol. 7, Carry Le Rovet 1992, ed. by R. Stamm, B. Talin (Nova Science, Paris 1994);Google Scholar
  11. 3.4g
    Vol.8, Toronto 1994, ed. by A.D. May, J.R. Drummond (AIP, New York 1995);Google Scholar
  12. 3.4h
    Vol.9, Florence 1996, ed. by M. Zoppi, L. Olivi (AIP, New York 1997);Google Scholar
  13. 3.4i
    Vol. 10, State College, PA, USA, ed. by R.M. Herrmann (AIP, New York 1999);Google Scholar
  14. 3.4k
    Vol. 11, Berlin 2000, ed. by J. Seidel (AIP, New York 2001)Google Scholar
  15. 3.5
    C. Cohen-Tannoudji: Quantum Mechanics (Wiley, New York 1977)Google Scholar
  16. 3.6
    S.N. Dobryakov, Y.S. Lebedev: Analysis of spectral lines whose profile is described by a composition of Gaussian and Lorentz profiles. Sov. Phys. Dokl. 13, 9 (1969)Google Scholar
  17. 3.7
    A. Unsöld: Physik der Sternatmosphären (Springer, Berlin, Heidelberg 1955)zbMATHCrossRefGoogle Scholar
  18. 3.7a
    A. Unsöld, B. Baschek: The New Cosmos, 5th edn. (Springer, Berlin, Heidelberg 2001)Google Scholar
  19. 3.8
    E. Lindholm: Pressure broadening of spectral lines. Ark. Mat. Astron. Fys. 32A, 17 (1945)Google Scholar
  20. 3.9
    A. Ben Reuven: The meaning of collisional broadening of spectral lines. The classical oscillation model. Adv. Atom. Mol. Phys. 5, 201 (1969)ADSCrossRefGoogle Scholar
  21. 3.10
    F. Schuler, W. Behmenburg: Perturbation of spectral lines by atomic interactions. Phys. Rep. C 12, 274 (1974)ADSCrossRefGoogle Scholar
  22. 3.11
    D. Ter Haar: Elements of Statistical Mechanics (Pergamon, New York 1977)Google Scholar
  23. 3.12
    A. Gallagher: ‘The spectra of colliding atoms’. In: Atomic Physics, Vol. 4, ed. by G. zu Putlitz, E.W. Weber, A. Winnaker (Plenum, New York 1975)Google Scholar
  24. 3.13
    K. Niemax. G. Pichler: Determination of van der Waals constants from the red wings of self-broadened Cs principal series lines. J. Phys. B 8, 2718 (1975)ADSCrossRefGoogle Scholar
  25. 3.14
    N. Allard, J. Kielkopf: The effect of neutral nonresonant collisions on atomic spectral lines. Rev. Mod. Phys. 54, 1103 (1982)ADSCrossRefGoogle Scholar
  26. 3.15
    U. Fano, A.R.P. Rau: Atomic Collisions and Spectra (Academic, New York 1986)Google Scholar
  27. 3.16
    K. Sando, Shi-I.: Pressure broadening and laser-induced spectral line shapes. Advanc. At. Mol. Phys. 25, 133 (1988)ADSCrossRefGoogle Scholar
  28. 3.17
    J.N. Murrel: Introduction to the Theory of Atomic and Molecular Collisions (Wiley, Chichester 1989)Google Scholar
  29. 3.18
    R.J. Exton, W.L. Snow: Line shapes for satellites and inversion of the data to obtain interaction potentials. J. Quant. Spectrosc. Radiat. Transfer. 20, 1 (1978)ADSCrossRefGoogle Scholar
  30. 3.19
    H. Griem: Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge 1997)CrossRefGoogle Scholar
  31. 3.20
    A. Sasso, G.M. Tino, M. Inguscio, N. Beverini, M. Francesconi: Investigations of collisional line shapes of neon transitions in noble gas mixtures. Nuov. Cimento D 10, 941 (1988)ADSCrossRefGoogle Scholar
  32. 3.21
    C.C. Davis, I.A. King: ‘Gaseous ion lasers’. In: Adv. Quantum Electronics, Vol. 3, ed. by D.W. Godwin (Academic, New York 1975)Google Scholar
  33. 3.22
    W.R. Bennett: The Physics of Gas Lasers (Gordon and Breach, New York 1977)Google Scholar
  34. 3.23
    R. Moore: ‘Atoms in dense plasmas’. In: Atoms in Unusual Situations, ed. by J.P. Briand, Nato ASI, Ser. B, Vol. 143 (Plenum, New York 1986)Google Scholar
  35. 3.24
    H. Motz: The Physics of Laser Fusion (Academic, London 1979)Google Scholar
  36. 3.25
    T.P. Hughes: Plasmas and Laser Light (Hilger, Bristol 1975)Google Scholar
  37. 3.26
    A.S. Katzantsev, J.C. Hénoux: Polarization Spectroscopy of Ionized Gases (Kluwer Academ., Dordrecht 1995)CrossRefGoogle Scholar
  38. 3.27
    I.R. Senitzky: ‘Semiclassical radiation theory within a quantum mechanical framework’. In: Progress in Optics 16 (North-Holland, Amsterdam 1978) p.413Google Scholar
  39. 3.28
    W.R. Hindmarsh, J.M. Farr: ‘Collision broadening of spectral lines by neutral atoms’. In: Progr. Quantum Electronics, Vol.2, Part 4, ed. by J.H. Sanders, S. Stenholm (Pergamon, Oxford 1973)Google Scholar
  40. 3.29
    N. Anderson, K. Bartschat: Polarization, Alignment and Orientation in Atomic Collisions (Springer, Heidelberg 2001)CrossRefGoogle Scholar
  41. 3.30
    R.G. Breen: ‘Line width’. In: Handbuch der Physik, Vol.27, ed. by S. Flügge (Springer, Berlin 1964) p. 1Google Scholar
  42. 3.31
    J. Hirschfelder, Ch.F. Curtiss, R.B. Bird: Molecular Theory of Gases and Liquids (Wiley, New York 1954)zbMATHGoogle Scholar
  43. 3.32
    S. Yi Chen, M. Takeo: Broadening and shift of spectral lines due to the presence of foreign gases. Rev. Mod. Phys. 29, 20 (1957)ADSCrossRefGoogle Scholar
  44. 3.33
    K.M. Sando, Shih-I. Chu: Pressure broadening and laser-induced spectral line shapes. Adv. At. Mol. Phys. 25, 133 (1988)ADSCrossRefGoogle Scholar
  45. 3.34
    R.H. Dicke: The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472 (1953)ADSCrossRefGoogle Scholar
  46. 3.35
    R.S. Eng, A.R. Calawa, T.C. Harman, P.L. Kelley: Collisional narrowing of infrared water vapor transitions. Appl. Phys. Lett. 21, 303 (1972)ADSCrossRefGoogle Scholar
  47. 3.36
    A.T. Ramsey, L.W. Anderson: Pressure Shifts in the 23Na Hyperfine Frequency. J. Chem. Phys. 43, 191 (1965)ADSCrossRefGoogle Scholar
  48. 3.37
    K. Shimoda: ‘Line broadening and narrowing effects’. In: High-Resolution Spectroscopy, Topics Appl. Phys., Vol. 13, ed. by K. Shimoda (Springer, Berlin, Heidelberg 1976) p. 11CrossRefGoogle Scholar
  49. 3.38
    J. Hall: ‘The line shape problem in laser saturated molecular absorptions’. In: Lecture Notes in Theor Phys., Vol. 12A, ed. by K. Mahanthappa, W. Brittin (Gordon and Breach, New York 1971)Google Scholar
  50. 3.39
    V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977)Google Scholar
  51. 3.40
    K.H. Drexhage: ‘Structure and properties of laser dyes’. In: Dye Lasers, 3rd edn., Topics Appl. Phys., Vol. 1, ed. by RR Schäfer (Springer, Berlin, Heidelberg 1990)Google Scholar
  52. 3.41
    D.S. McClure: ‘Electronic spectra of molecules and ions in crystals’. In: Solid State Phys., Vols. 8 and 9 (Academic, New York 1959)Google Scholar
  53. 3.42
    W.M. Yen, P.M. Selzer (Eds.): Laser Spectroscopy of Solids, Springer Ser. Opt. Sci., Vol.14 (Springer, Berlin, Heidelberg 1981)Google Scholar
  54. 3.43
    A.A. Kaminskii: Laser Crystals, 2nd edn., Springer Ser. Opt. Sci., Vol. 14 (Springer, Berlin, Heidelberg. 1991)Google Scholar
  55. 3.44
    C.H. Wei, K. Holliday, A.J. Meixner, M. Croci, U.P. Wild: Spectral hole-burning study of BaFClBrSm(2+). J. Lumin. 50, 89 (1991)CrossRefGoogle Scholar
  56. 3.45
    W.E. Moerner: Persistent Spectral Hole-Burning: Science and Applications, Topics Curr. Phys., Vol.44 (Springer, Berlin, Heidelberg 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations