Advertisement

Applications of Laser Spectroscopy

  • Wolfgang Demtröder
Chapter
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

The relevance of laser spectroscopy for numerous applications in physics, chemistry, biology, and medicine, or to environmental studies and technical problems has rapidly gained enormous significance. This is manifested by an increasing number of books and reviews. This chapter can only discuss some examples that are selected in order to demonstrate how many fascinating applications already exist and how much research and development is still needed. For a detailed representation of more examples, the reader is referred to the references given in the sections that follow as well as to some monographs and reviews [15.1–15.4].

Keywords

Excimer Laser Laser Spectroscopy Excited Molecule Isotope Separation Laser Lithotripsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 15.1
    A. Mooradian, T. Jaeger, P. Stokseth (Eds.): Tunable Lasers and Applications, Springer Ser. Opt. Sci., Vol.3 (Springer, Berlin, Heidelberg 1976)Google Scholar
  2. 15.2
    C.T. Lin, A. Mooradian (Eds.): Lasers and Applications, Springer Ser. Opt. Sci., Vol.26 (Springer, Berlin, Heidelberg 1981)Google Scholar
  3. 15.3
    J.F. Ready, R.K. Erf (Eds.): Lasers and Applications, Vols. 1–5 (Academic, New York 1974–1984)Google Scholar
  4. 15.4
    S. Svanberg: Atomic and Molecular Spectroscopy, 2nd edn., Springer Ser. Atoms Plasmas, Vol.6 (Springer, Berlin, Heidelberg, New York 1991)CrossRefGoogle Scholar
  5. 15.5
    C.B. Moore: Chemical and Biochemical Applications of Lasers, Vols. 1–5 (Academic, New York 1974–1984)Google Scholar
  6. 15.6
    D.K. Evans: Laser Applications in Physical Chemistry (Dekker, New York 1989);Google Scholar
  7. 15.6a
    D.L. Andrews: Lasers in Chemistry (Springer, Berlin, Heidelberg, New York 1986);CrossRefGoogle Scholar
  8. 15.6b
    A.H. Zewail (Ed.): Advances in Laser Chemistry, Springer Ser. Chem. Phys., Vol. 3 (Springer, Berlin, Heidelberg, New York 1978)Google Scholar
  9. 15.7
    G.R. van Hecke, K.K. Karukstis: A Guide to Lasers in Chemistry (Jones & Bartlett Publ., Boston 1997)Google Scholar
  10. 15.8
    R.T. Rizzo, A.B. Myers: Laser Techniques in Chemistry (Wiley, New York 1995)Google Scholar
  11. 15.9
    G. Schmidtke, W. Kohn, U. Klocke, M. Knothe, W.J. Riedel, H. Wolf: Diode laser spectrometer for monitoring up to five atmospheric trace gases in unattended operation. Appl. Opt. 28, 3665 (1989)ADSCrossRefGoogle Scholar
  12. 15.10
    G.S. Hurst, M.P. Payne, S.P. Kramer, C.H. Cheng: Counting the atoms. Phys. Today 33, 24 (Sept. 1980)CrossRefGoogle Scholar
  13. 15.11
    VS. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando, FL 1987)Google Scholar
  14. 15.12
    P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann: Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser. Appl. Phys. B 38, 249 (1985)ADSCrossRefGoogle Scholar
  15. 15.13
    T. Whitaker: Isotopically selective laser measurements. Lasers Appl. 5, 67 (Aug. 1986)Google Scholar
  16. 15.14
    H. Kano, H.T.M. van der Voort, M. Schrader, G.M.P van Kampen, S.W. Hell: Avalanche photodiode detection with object scanning and image restoration provides 2–4 fold resolution increase in two-photon fluorescence microscopy. Bioimaging 4, 187 (1996)CrossRefGoogle Scholar
  17. 15.15
    J. Widengren, Ü. Mets, R. Rigler: Fluorescence correlation spectroscopy of triplet states in solution. J. Chem. Phys. 99, 13368 (1995)CrossRefGoogle Scholar
  18. 15.16
    WE. Moerner, R.M. Dickson, D.J. Norris: Single-molecule spectroscopy and quantum optics in solids. Adv. At. Mol. Opt. Phys. 38, pp. 193 ff. (1997)ADSCrossRefGoogle Scholar
  19. 15.17
    G. Jung, J. Wiehler, B. Steipe, C. Bräuchle, A. Zumbusch: Single-molecule microscopy of the green fluorescent protein using two-color excitation. Chem. Phys. Chem. 2, 392 (2001)CrossRefGoogle Scholar
  20. 15.18
    P. Schwüle, U. Haupts, S. Maiti, W.W. Web: Molecular dynamics in living cells observed by fluorescence correlation spectroscopy. Biophys. J. 77, 2251 (1999)CrossRefGoogle Scholar
  21. 15.19
    E.H. Piepmeier (Ed.): Analytical Applicability of Lasers (Wiley, New York 1986)Google Scholar
  22. 15.20
    J. Sneddon, T.L. Thiem, Y. Lee (Eds.): Lasers in Analytical Atomic Spectroscopy (Wiley VCH, Weinheim 1997)Google Scholar
  23. 15.21
    K. Niemax: Analytical Aspects of Atomic Laser Spectrochemistry (Harwood Acad. Publ., Philadelphia 1989)Google Scholar
  24. 15.22
    A. Baronarski, J.W. Butler, J.W. Hudgens, M.C. Lin, J.R. McDonald, M.E. Urn-stead: ‘Chemical Applications of Lasers’. In: A.H. Zewail (Ed.): Advances in Laser Chemistry, Springer Ser. Chem. Phys., Vol. 3 (Springer, Berlin, Heidelberg New York 1986) p. 62CrossRefGoogle Scholar
  25. 15.23
    B. Raffel, J. Wolfrum: Spatial and time resolved observation of CO2-laser induced explosions of O2-O</sub>3</sub>-mixtures in a cylindrical cell. Z. Phys. Chem. (NF) 161, 43 (1989)CrossRefGoogle Scholar
  26. 15.24
    R.L. Woodin, A. Kaldor: Enhancement of chemical reactions by infrared lasers. Adv. Chem. Phys. 47, 3 (1981)CrossRefGoogle Scholar
  27. 15.24a
    M. Quack: Infrared laser chemistry and the dynamics of molecular multiphoton excitation. Infrared Phys. 29, 441 (1989)ADSCrossRefGoogle Scholar
  28. 15.25
    CD. Cantrell (Ed.): Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Springer Topics. Curr. Phys., Vol.35 (Springer, Berlin, Heidelberg, New York 1986);Google Scholar
  29. 15.25a
    V.N. Bagratashvili, VS. Letokhov, A.D. Makarov, E.A. Ryabov: Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood, Chur 1985)Google Scholar
  30. 15.26
    J.H. Clark, K.M. Leary, T.R. Loree, L.B. Harding: ‘Laser synthesis chemistry and laser photogeneration of catalysis’. In: D.K. Evans: Laser Applications in Physical Chemistry (Dekker, New York 1989) p. 74Google Scholar
  31. 15.27
    Gong Mengxiong, W. Fuss, K.L. Kompa: CO2 laser induced chain reaction of C2F</sub>4</sub> + CF3I. J. Phys. Chem. 94, 6332 (1990)CrossRefGoogle Scholar
  32. 15.28
    M. Schneider, J. Wolfrum: Mechanisms of by-product formation in the dehydro-chlorination of dichlorethane. Ber. Bunsenges. Phys. Chem. 90, 1058 (1986)CrossRefGoogle Scholar
  33. 15.29
    Zhang Linyang, W. Fuss, K.L. Kompa: KrF laser induced telomerization of bromides with olefins. Ber. Bunsenges. Phys. Chem. 94, 867 (1990)CrossRefGoogle Scholar
  34. 15.30
    K.L. Kompa: Laser photochemistry at surfaces. Angew. Chem. 27, 1314 (1988)CrossRefGoogle Scholar
  35. 15.31
    M.S. Djidjoev, R.V. Khokhlov, A.V. Kieselev, V.I. Lygin, V.A. Namiot, A.I. Osipov, VI. Panchenko, YB.I. Provottorov: ‘Laser chemistry at surfaces’. In: D.K. Evans: Laser Applications in Physical Chemistry (Dekker, New York 1989) p. 7Google Scholar
  36. 15.32
    de Vivie-Riedle, H. Rabitz, K.L. Kompa (Eds.): Laser Control of Quantum Dynamics. Special Issue of Chemical Physics 267 (2001)Google Scholar
  37. 15.33
    P. Brumer, M. Shapiro: Control of unimolecular reactions using coherent light. Chem. Phys. Lett. 126, 541 (1986);ADSCrossRefGoogle Scholar
  38. 15.33a
    M. Shapiro, P. Brumer: Coherent control of atomic, molecular and electronic processes. Adv. At. Mol. Opt. Phys. 42, 287 (2000)ADSCrossRefGoogle Scholar
  39. 15.34
    D.J. Tannor, R. Kosloff, S.A. Rice: Coherent pulse sequence induced control of selectivity reactions. J. Chem. Phys. 85, 5805 (1986)ADSCrossRefGoogle Scholar
  40. 15.35
    M. Shapiro: Association, dissociation and the acceleration and suppression of reactions by laser pulses. Adv. Chem. Phys. 114, 123–192 (1999);CrossRefGoogle Scholar
  41. 15.35a
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber: Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919 (1998)ADSCrossRefGoogle Scholar
  42. 15.36
    D. Zeidler, S. Frey, K.L. Kompa, M. Motzkus: Evolutionary algorithms and their applications to optimal control studies. Phys. Rev. A 64, 023420 (2001)ADSCrossRefGoogle Scholar
  43. 15.37
    M. Bergt, T. Brixner, B. Kiefer, M. Strehle, G. Gerber: Controlling the femto-chemistry of Fe(CO)5. J. Phys. Chem. 103, 10381 (1999)CrossRefGoogle Scholar
  44. 15.38
    T. Brixner, B. Kiefer, G. Gerber: Problem complexity in femtosecond quantum control. Chem. Phys. 267, 241 (2001)ADSCrossRefGoogle Scholar
  45. 15.39
    R.J. Levis, G.M. Menkir, H. Rabitz: Selective bond dissociation and rearrangement with optimally tailored, strong field laser pulses. Science 292, 709 (2001)ADSCrossRefGoogle Scholar
  46. 15.40
    A. Rice, M. Zhao: Optical Control of Molecular Dynamics (Wiley, New York 2000)Google Scholar
  47. 15.41
    P. Gaspard, I. Burghardt (Eds.): Chemical reactions and their control on the femtosecond time scale. Adv. Chem. Phys. 101, (1997)Google Scholar
  48. 15.42
    R.N. Zare, R.B. Bernstein: State to state reaction dynamics. Phys. Today 3, 43 (Nov. 1980)CrossRefGoogle Scholar
  49. 15.43
    A.H. Zewail: Laser femtochemistry. Science 242, 1645 (1988);ADSCrossRefGoogle Scholar
  50. 15.43a
    A.H. Zewail: The birth of molecules. Sci. Am. 262, 76 (Dec. 1990);CrossRefGoogle Scholar
  51. 15.43b
    J. Manz, L. Wöste (Eds.): Femtosecond Chemistry, Vols. I and II (VCH, Wein-heim 1995)Google Scholar
  52. 15.44
    A.H. Zewail: Femtochemistry (World Scientific, Singapore 1994)Google Scholar
  53. 15.45
    B. Bescós, B. Lang, J. Weiner, V. Weiss, E. Wiedemann, G. Gerber: Real-time observation of ultrafast ionization and fragmentation of mercury clusters. Eur. Phys. J. D 9, 399 (1999)ADSCrossRefGoogle Scholar
  54. 15.46
    H. Bürsing, P. Vöhringer: Transition state probing and fragment rotational dynamics of HgI2. Phys. Chem. Chem. Phys. 2, 73 (2000)CrossRefGoogle Scholar
  55. 15.47
    St. Hess, H. Bürsing, P. Vöhringer: Dynamics of fragment recoil in the femtosecond photodissociation of triiodide ions. J. Chem. Phys. 111, 5461 (1999)ADSCrossRefGoogle Scholar
  56. 15.48
    S.A. Trushin, W. Fuss, K.L. Kompa, W.E. Schmid: Femtosecond dynamics of Fe(CO)5 photodissociation at 267 nm studied by transient ionization. J. Phys. Chem. A 104, 1997 (2000)CrossRefGoogle Scholar
  57. 15.49
    A.H. Zewail: Femtosecond transition-state dynamics. Faraday Discuss. Chem. Soc. 91, 1 (1991)Google Scholar
  58. 15.50
    S. Villani: Isotope Separation (Am. Nucl. Soc, Hinsdale, Ill. 1976);Google Scholar
  59. 15.50a
    S. Villani: Uranium Enrichment, Topics Appl. Phys., Vol.35 (Springer, Berlin, Heidelberg 1979);CrossRefGoogle Scholar
  60. 15.50b
    W. Ehrfeld: Elements of Flow and Diffusion Processes in Separation Nozzles, Springer Tracts Mod. Phys., Vol. 97 (Springer, Berlin, Heidelberg 1983)CrossRefGoogle Scholar
  61. 15.51
    C.D. Cantrell, S.M. Freund, J.L. Lyman: ‘Laser induced chemical reactions and isotope separation’. In: Laser Handbook, Vol.3, ed. by M.L. Stitch (North-Holland, Amsterdam 1979);Google Scholar
  62. 15.51a
    R.N. Zare: Laser separation of isotopes. Sci. Am. 236, 86 (Feb. 1977);CrossRefGoogle Scholar
  63. 15.51b
    F.S. Becker, K.L. Kompa: Laser isotope separation. Europhys. News 12, 2 (July 1981);Google Scholar
  64. 15.51c
    R.D. Alpine, D.K. Evans: Laser isotope separation by the selective multiphoton decomposition process. Adv. Chem. Phys. 60, 31 (1985)CrossRefGoogle Scholar
  65. 15.52
    J.P. Aldridge, J.H. Birley, C.D. Cantrell, D.C. Cartwright: ‘Experimental and studies of laser isotope separation’. In: Laser Photochemistry, Tunable Lasers, ed. by S.E. Jacobs, S.M. Sargent, M.O. Scully, C.T. Walker (Addison-Wesley, Reading, MA 1976)Google Scholar
  66. 15.53
    J.I. Davies, J.Z. Holtz, M.L. Spaeth: Status and prospects for lasers in isotope separation. Laser Focus 18, 49 (Sept. 1982)Google Scholar
  67. 15.54
    M. Stuke: Isotopentrennung mit Laserlicht. Spektrum Wissenschaft. 4, 76 (1982)Google Scholar
  68. 15.55 (a)
    F.S. Becker, K.L. Kompa: The practical and physical aspects of uranium isotope separation with lasers. Nuc. Technol. 58, 329 (1982);Google Scholar
  69. (b).
    C.P. Robinson, R.J. Jensen: ‘Laser methods of uranium isotope separation’. In: S. Villani: Uranium Enrichment, Topics Appl. Phys., Vol.35 (Springer, Berlin, Heidelberg 1979) p. 269CrossRefGoogle Scholar
  70. 15.56
    L. Mannik, S.K. Brown: Laser enrichment of carbon 14. Appl. Phys. B 37, 79 (1985)ADSCrossRefGoogle Scholar
  71. 15.57
    A. von Allmen: Laser-Beam Interaction with Materials, 2nd edn., Springer Ser. Mater. Sci., Vol.2 (Springer, Berlin, Heidelberg, New York 1995);CrossRefGoogle Scholar
  72. 15.57a
    P.N. Bajaj, K.G. Manohar, B.M. Suri, K. Dasgupta, R. Talukdar, P.K. Chakraborti, P.R.K. Rao: Two colour multiphoton ionization spectroscopy of uranium from a metastable state. Appl. Phys. B47, 55 (1988)ADSGoogle Scholar
  73. 15.58
    A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hacker: Laboratory scale-up of two stage laser chemistry separation of 13C from CF2HCL. Appl. Phys. B 36, 63 (1985);ADSCrossRefGoogle Scholar
  74. 15.58a
    I. Deac, V. Cosma, D. Silipas, L. Muresan, V. Tosa: Parametric study of the IRMPD of CF2HCl molecules with the 9P22 CO2 laser time. Appl. Phys. B 51, 211 (1990)ADSCrossRefGoogle Scholar
  75. 15.59
    C. D’Ambrosio, W. Fuss, K.L. Kompa, W.E. Schmid, S. Trushin: 13C separation by a continuous discharge CO2 laser Q-switched at 10 kHz. Infrared Phys. 29, 479 (1989);ADSCrossRefGoogle Scholar
  76. 15.59a
    C. D’Ambrosio, W. Fuss, K.L. Kompa, W.E. Schmid, S. Trushin: 13C separation by a continuous discharge CO2 laser Q-switched at 10 kHz. Appl. Phys. B 47, 19 (1988)Google Scholar
  77. 15.60
    K. Kleinermanns, J. Wolfrum: Laser in der Chemie — Wo stehen wir heute? Angew. Chemie 99, 38 (1987);CrossRefGoogle Scholar
  78. 15.60a
    J. Wolfrum: Laser spectroscopy for studying chemical processes. Appl. Phys. B 46, 221 (1988)ADSCrossRefGoogle Scholar
  79. 15.61
    DJ. Neshitt, St.R. Leone: Laser-initiated chemical chain reactions. J. Chem. Phys. 72, 1722 (1980)ADSCrossRefGoogle Scholar
  80. 15.62
    D. Bäuerle: Chemical Processing with Lasers, Springer Ser. Mater. Sci., Vol. 1 (Springer, Berlin, Heidelberg, New York 1986)CrossRefGoogle Scholar
  81. 15.63
    VS. Letokhov (Ed.): Laser Analytical Spectrochemistry (Hilger, Bristol 1985)Google Scholar
  82. 15.64
    K. Peters: Picosecond organic photochemistry. Annu. Rev. Phys. Chem. 38, 253 (1987)ADSCrossRefGoogle Scholar
  83. 15.65
    M. Gruehele, A.H. Zewail: Ultrafast reaction dynamics. Phys. Today, 13, 24 (May 1990)CrossRefGoogle Scholar
  84. 15.66
    J. Wolfrum: Laser spectroscopy for studying chemical processes. Appl. Phys. B 46, 221 (1988);ADSCrossRefGoogle Scholar
  85. 15.66a
    J. Wolfrum: Laser stimulation and observation of simple gas phase radical reactions. Laser Chem. 9, 171 (1988)CrossRefGoogle Scholar
  86. 15.67
    E. Hirota: From high resolution spectroscopy to chemical reactions. Ann. Rev. Phys. Chem. 42, 1 (1991)MathSciNetADSCrossRefGoogle Scholar
  87. 15.68
    J.I. Steinfeld: Laser-Induced Chemical Processes (Plenum, New York 1981)CrossRefGoogle Scholar
  88. 15.69
    L.J. Kovalenko, S.L. Leone: Innovative laser techniques in chemical kinetics. J. Chem. Educ. 65, 681 (1988)CrossRefGoogle Scholar
  89. 15.70
    A. Ben-Shaul, Y. Haas, K.L. Kompa, R.D. Levine: Lasers and Chemical Change, Springer Ser. Chem. Phys., Vol. 10 (Springer, Berlin, Heidelberg 1981)CrossRefGoogle Scholar
  90. 15.71
    K.L. Kompa, S.D. Smith (Eds.): Laser-Induced Processes in Molecules, Springer Ser. Chem. Phys., Vol.6 (Springer, Berlin, Heidelberg 1979)Google Scholar
  91. 15.72
    K.L. Kompa, J. Warner: Laser Applications in Chemistry (Plenum, New York 1984)CrossRefGoogle Scholar
  92. 15.73
    A.H. Zewail: Femtosecond transition state dynamics. Faraday Discuss. Chem. Soc. 91, 1 (1991)Google Scholar
  93. 15.74
    L.R. Khundar, A.H. Zewail: Ultrafast reaction dynamics in real times. Annu. Rev. Phys. Chem. 41, 15 (1990)ADSCrossRefGoogle Scholar
  94. 15.75
    J. Steinfeld: Air Pollution (Wiley, New York 1986)Google Scholar
  95. 15.76
    C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)Google Scholar
  96. 15.77
    R. Zellner, J. Hagele: A double-beam UV-laser differential absorption method for monitoring tropospheric trace gases. Opt. Laser Technol. 17, 79 (April 1985)ADSCrossRefGoogle Scholar
  97. 15.78
    E.D. Hinkley (Ed.): Laser Monitoring of the Atmosphere, Topics Appl. Phys., Vol. 14 (Springer, Berlin, Heidelberg 1976);Google Scholar
  98. 15.78a
    B. Stumpf, D. Göring, R. Haseloff, K. Herrmann: Detection of carbon monoxide, carbon dioxide with pulsed tunable Pb1-xSex diode lasers. Collect. Czech. Chem. Commun. 54, 284 (1989)CrossRefGoogle Scholar
  99. 15.79
    A. Tönnissen, J. Wanner, K.W. Rothe, H. Walther: Application of a CW chemical laser for remote pollution monitoring and process control. Appl. Phys. 18, 297 (1979)ADSCrossRefGoogle Scholar
  100. 15.80
    W. Meinburg, H. Neckel, J. Wolfrum: Lasermeßtechnik und mathematische Simulation von Sekundärmaßnahmen zur NOx-Minderung in Kraftwerken. Appl. Phys. B 51, 94 (1990);ADSCrossRefGoogle Scholar
  101. 15.80a
    A. Arnold, H. Becker, W. Ketterle, J. Wolfrum: Combustion diagnostics by two dimensional laser-induced fluorescence using tunable excimer lasers. SPIE Proc. 1602, 70 (1991)Google Scholar
  102. 15.81
    W. Meienburg, H. Neckel, J. Wolfrum: In situ measurement of ammonia with a 13CO2-waveguide laser system. Appl. Phys. B 51, 94 (1990)ADSCrossRefGoogle Scholar
  103. 15.82
    P. Wehrle: A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta, Part A 54, 197 (1998)ADSCrossRefGoogle Scholar
  104. 15.83
    K.W. Rothe, U. Brinkmann, H. Walther: Remote measurement of NO2-emission from a chemical factory by the differential absorption technique. Appl. Phys. 4, 181 (1974)ADSCrossRefGoogle Scholar
  105. 15.84
    H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste: Simultaneous NO and NO2 DIAL measurements using BBO crystals. Appl. Opt. 28, 2052 (1989)ADSCrossRefGoogle Scholar
  106. 15.85
    J.P. Wolf, H.J. Kölsch, P. Rairoux, L. Wöste: ‘Remote detection of atmospheric pollutants using differential absorption LIDAR techniques’. In: Applied Laser Spectroscopy, ed. by W. Demtröder, M. Inguscio (Plenum, New York 1991) p. 435Google Scholar
  107. 15.86
    A.L. Egeback, K.A. Fredrikson, H.M. Hertz: DIAL techniques for the control of sulfur dioxide emissions. Appl. Opt. 23, 722 (1984)ADSCrossRefGoogle Scholar
  108. 15.87
    J. Werner, K.W. Rothe, H. Walther: Monitoring of the stratospheric ozone layer by laser radar. Appl. Phys. B 32, 113 (1983)ADSCrossRefGoogle Scholar
  109. 15.88
    W. Steinbrecht, K.W. Rothe, H. Walther: Lidar setup for daytime and nighttime probing of stratospheric ozone and measurements in polar and equitorial regimes. Appl. Opt. 28, 3616 (1988)ADSCrossRefGoogle Scholar
  110. 15.89 (a)
    J. Shibuta, T. Fukuda, T. Narikiyo, M. Maeda: Evaluation of the solarblind effect in ultraviolet ozone lidar with Raman lasers. Appl. Opt. 26, 2604 (1984);ADSCrossRefGoogle Scholar
  111. 15.89 (b)
    C. Weitkamp, O. Thomsen, P. Bisling: Signal and reference wavelengths for the elimination of SO2 cross sensitivity in remote measurements of tropospheric ozone with lidar. Laser Optoelectr. 24, 246 (April 1992)Google Scholar
  112. 15.90
    A. Asmann, R. Neuber, P. Rairoux (Eds.): Advances in Atmospheric Remote Sensing with LIDAR (Springer, Berlin, Heidelberg, New York 1997)Google Scholar
  113. 15.91
    U. v. Zahn, P. von der Gathen, G. Hansen: Forced release of sodium from upper atmospheric dust particles. Geophys. Res. Lett. 14, 76 (1987)ADSCrossRefGoogle Scholar
  114. 15.92
    F.J. Lehmann, S.A. Lee, C.Y. She: Laboratory measurements of atmospheric temperature and backscatter ratio using a high-spectral-resolution lidar technique. Opt. Lett. 11, 563 (1986)ADSCrossRefGoogle Scholar
  115. 15.93
    M.M. Sokolski (Ed.): Laser Applications in Meterology and Earth- and Atmospheric Remote Sensing. SPIE Proc. 1062 (1989)Google Scholar
  116. 15.94
    R.M. Measure: Laser Remote Sensing: Fundamentals and Applications (Wiley, Toronto 1984)Google Scholar
  117. 15.95
    J. Looney, K. Petri, A. Salik: Measurements of high resolution atmospheric water vapor profiles by use of a solarblind Raman lidar. Appl. Opt. 24, 104 (1985)ADSCrossRefGoogle Scholar
  118. 15.96
    H. Edner, S. Svanberg, L. Uneus, W. Wendt: Gas-correlation LIDAR. Opt. Lett. 9, 493 (1984)ADSCrossRefGoogle Scholar
  119. 15.97
    J.A. Gelbwachs: Atomic resonance filters. IEEE J. QE-24, 1266 (1988)CrossRefGoogle Scholar
  120. 15.98
    P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste: Remote sensing of the atmosphere, using ultrashort laser pulses. Appl. Phys. B 71, 573 (2000)ADSCrossRefGoogle Scholar
  121. 15.99
    S. Svanberg: ‘Fundamentals of atmospheric spectroscopy’. In: Surveillance of Environmental Pollution and Resources by El. Mag. Waves, ed. by I. Lund (Reidel, Dordrecht 1978)Google Scholar
  122. 15.99a
    Ph.N. Slater: Remote Sensing (Addison-Wesley, London 1980)Google Scholar
  123. 15.100
    R.M. Measures: Laser Remote Chemical Analysis (Wiley, New York 1988)Google Scholar
  124. 15.101
    D.K. Killinger, A. Mooradian (Eds.): Optical and Laser Remote Sensing, Springer Ser. Opt. Sci., Vol. 39 (Springer, Berlin, Heidelberg 1983)Google Scholar
  125. 15.102
    R.N. Dubinsky: Lidar moves towards the 21st century. Laser Optron. 7, 93 (April 1988);Google Scholar
  126. 15.102a
    S. Svanberg: ‘Environmental monitoring using optical techniques’. In: Applied Laser Spectroscopy, ed. by W. Demtröder, M. Inguscio (Plenum, New York 1991) p. 417Google Scholar
  127. 15.103
    H. Walther: Laser investigations in the atmosphere. Festkörperprobleme 20, 327 (Vieweg, Braunschweig 1980)Google Scholar
  128. 15.104
    E.J. McCartney: Optics of the Atmosphere (Wiley, New York 1976)Google Scholar
  129. 15.105
    J.W. Strohbehn (Ed.): Laser Beam Propagation in the Atmosphere, Topics Appl. Phys., Vol.25 (Springer, Berlin, Heidelberg 1978)Google Scholar
  130. 15.106
    W. Schade: Experimentelle Untersuchungen zur zeitaufgelösten Fluoreszenzspektroskopie mit kurzen Laserpulsen. Habilitation-Thesis, Math.-Naturw. Fakultät, Univ. Kiel, Germany (1992)Google Scholar
  131. 15.107
    J. Ilkin, R. Stumpe, R. Klenze: Laser-induced photoacoustic spectroscopy for the speciation of transuranium elements in natural aquatic systems. Topics Curr. Chem. 157, 129 (Springer, Berlin, Heidelberg, New York 1990)Google Scholar
  132. 15.108
    R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum: Two-dimensional visualization of the flame front in an internal combustion engine by laser-induced fluorescence of OH radicals. Appl. Phys. B 47, 287 (1988)ADSCrossRefGoogle Scholar
  133. 15.109 (a)
    A.M. Wodtke, L. Hüwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen: High sensitivity detection of NO in a flame using a tunable Ar-F-laser. Opt. Lett. 13, 910 (1988);ADSCrossRefGoogle Scholar
  134. 15.109 (b)
    M. Schäfer, W. Ketterle, J. Wolfrum: Saturated 2D-LIF of OH and 2D determination of effective collisional lifetimes in atmospheric pressure flames. Appl. Phys. B 52, 341 (1991)ADSCrossRefGoogle Scholar
  135. 15.110
    P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann: Zweidimensionale Konzentrationsmessungen im Brennraum des Transparentmotors mit Hilfe von Laser-Fluoreszenzverfahren. Bericht 11/1989, MPI für Strömungsforschung Göttingen (1989);Google Scholar
  136. 15.110a
    P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann: Combustion optimization pushed forward by excimer LIF-methods. Lambda-Physic Highlights No. 14 (December 1988)Google Scholar
  137. 15.111
    M. Alden, K. Fredrikson, S. Wallin: Application of a two-colour dye laser in CARS experiments for fast determination of temperatures. Appl. Opt. 23, 2053 (1984)ADSCrossRefGoogle Scholar
  138. 15.112
    J.P. Taran: ‘CARS spectroscopy and applications’. In: Applied Laser Spectroscopy, ed. by W. Demtröder, M. Inguscio (Plenum, New York 1991) p. 365;Google Scholar
  139. 15.112a
    J.P. Taran: A. D’Allescio, A. Cavaliere: ‘Laser spectroscopy applied to combustion’. In: Applied Laser Spectroscopy, ed. by W. Demtröder, M. Inguscio (Plenum, New York 1991) p. 393Google Scholar
  140. 15.113
    R.W. Dreyfus: ‘Useful macroscopic phenomena due to laser ablation’. In: Desorption Induced by Electronic Transitions DIET IV, Springer Ser. Surf. Sci., Vol. 19 (Springer, Berlin, Heidelberg, New York 1990) p. 348;CrossRefGoogle Scholar
  141. 15.113a
    J.C. Miller, R.F. Haglund (Eds.): Laser Ablation: Mechanisms and Applications, Lecture Notes Phys., Vol.389 (Springer, Berlin, Heidelberg 1991);Google Scholar
  142. 15.113b
    J.C. Miller (Ed.): Laser Ablation, Springer Ser. Mater. Sci., Vol. 28 (Springer, Berlin, Heidelberg, New York 1994)Google Scholar
  143. 15.114
    R. DeJonge: Internal energy of sputtered molecules. Comm. At. Mol. Phys. 22, 1 (1988)Google Scholar
  144. 15.115
    H.L. Bay: Laser induced fluorescence as a technique for investigations of sputtering phenomena. Nucl. Instrum. Meth. B 18, 430 (1987)CrossRefGoogle Scholar
  145. 15.116
    R.W. Dreyfus, J.M. Jasinski, R.E. Walkup, G. Selwyn: Laser spectroscopy in electronic materials processing research. Laser Focus 22, 62 (Dec. 1986);Google Scholar
  146. 15.116a
    R.W. Dreyfus, R.W. Walkup, R. Kelly: Laser-induced fluorescence studies of excimer laser ablation of A12O3. J. Appl. Phys. 49, 1478 (1986)Google Scholar
  147. 15.117
    J.M. Jasinski, E.A. Whittaker, G.C. Bjorklund, R.W. Dreyfus, R.D. Estes, R.E. Walkup: Detection of SiH2 in silane and disilane glow discharge by frequency modulated absorption spectroscopy. Appl. Phys. Lett. 44, 1155 (1984)ADSCrossRefGoogle Scholar
  148. 15.118
    H. Moenke, L. Moenke-Blankenburg: Einführung in die Laser Mikrospektralanalyse (Geest und Portig, Leipzig 1968)Google Scholar
  149. 15.119
    D. Bäuerle: Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, Heidelberg, New York 2000)CrossRefGoogle Scholar
  150. 15.120
    Hai-Lung, H. Wilson (Eds.): Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, Singapore 1995)Google Scholar
  151. 15.121
    F. Durst, A. Melling, J.H. Whitelaw: Principles and Practice of Laser-Doppler Anemometry, 2nd edn (Academic, New York 1981)Google Scholar
  152. 15.122
    T.S. Durrani, C.A. Greated: Laser Systems in Flow Measurement (Plenum, New York 1977)CrossRefGoogle Scholar
  153. 15.123
    L.E. Drain: The Laser Doppler Technique (Wiley, New York 1980)Google Scholar
  154. 15.124
    F. Durst, G. Richter: ‘Laser Doppler measurements of wind velocities using visible radiation’. In: Photon Correlation Techniques in Fluid Mechanics, ed. by E.O. Schulz-Dubois, Springer Ser. Opt. Sci., Vol.38 (Springer, Berlin, Heidelberg 1983) p. 136CrossRefGoogle Scholar
  155. 15.125
    R.M. Hochstrasser, C.K. Johnson: Lasers in biology. Laser Focus 21, 100 (May 1985)Google Scholar
  156. 15.126
    A. Anders: Dye-laser spectroscopy of bio-molecules. Laser Focus 13, 38 (Feb. 1977);Google Scholar
  157. 15.126a
    A. Anders: Selective laser excitation of bases in nucleic acids. Appl. Phys. 20, 257 (1979)ADSCrossRefGoogle Scholar
  158. 15.127
    A. Anders: Models of DNA-dye-complexes: energy transfer and molecular structure. Appl. Phys. 18, 373 (1979);ADSCrossRefGoogle Scholar
  159. 15.127a
    M.E. Michel-Beyerle (Ed.): Antennas and Reaction Centers of Photo synthetic Bacteria, Springer Ser. Chem. Phys., Vol. 42 (Springer, Berlin, Heidelberg 1983)Google Scholar
  160. 15.128
    R.R. Birge, B.M. Pierce: ‘The nature of the primary photochemical events in bacteriorhodopsin and rhodopsin’. In: Photochemistry and Photobiology, ed. by A.H. Zewail (Harwood, Chur 1983) p. 841Google Scholar
  161. 15.129
    P. Cornelius, R.M. Hochstrasser: ‘Picosecond processes involving CO, O2 and NO derivatives of hemoproteins’. In: Picosecond Phenomena III, ed. by K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, A. Lauberau, Springer Ser. Chem. Phys., Vol. 23 (Springer, Berlin, Heidelberg 1982)CrossRefGoogle Scholar
  162. 15.130
    D.P. Millar, R.J. Robbins, A.H. Zewail: Torsion and bending of nucleic acids, studied by subnanosecond time resolved depolarization of intercalated dyes. J. Chem. Phys. 76, 2080 (1982)ADSCrossRefGoogle Scholar
  163. 15.131
    L. Stryer: The molecules of visual excitation. Sci. Am. 157, 32 (July 1987)Google Scholar
  164. 15.132
    R.A. Mathies, S.W. Lin, J.B. Ames, WT. Pollard: From femtoseconds to biology: mechanisms of bacterion rhodopsin’s light driven proton pump. Annu. Rev. Biophysics Biophys. Chem. 20, 1000 (1991)Google Scholar
  165. 15.133
    D.C. Youvan, B.L. Marrs: Molecular mechanisms of photosynthesis. Sci. Am. 256, 42 (June 1987)CrossRefGoogle Scholar
  166. 15.134
    A.H. Zewail (Ed.): Photochemistry and Photobiology (Harwood, London 1983)Google Scholar
  167. 15.134a
    V.S. Letokhov: Laser Picosecond Spectroscopy and Photochemistry of Biomol-ecules (Hilger, London 1987);Google Scholar
  168. 15.134b
    R.R. Alfano (Ed.): Biological Events Probed by Ultrafast Laser Spectroscopy (Academic, New York 1982)Google Scholar
  169. 15.135
    W. Kaiser (Ed.): Ultrashort Laser Pulses, 2nd edn., Topics Appl. Phys., Vol.60 (Springer, Berlin, Heidelberg, New York 1993)Google Scholar
  170. 15.136
    E. Klose, B. Wilhelmi (Eds.): Ultrafast Phenomena in Spectroscopy, Springer Proc. Phys., Vol.49 (Springer, Berlin, Heidelberg, New York 1990)Google Scholar
  171. 15.137
    J.R. Lakowicz (Ed.): Time-Resolved Laser Spectroscopy in Biochemistry. SPIE Proc. 909 (1988)Google Scholar
  172. 15.138
    R.R. Birge, L.A. Nufie (Eds.): Biomolecular Spectroscopy. SPIE Proc. 1432 (1991)Google Scholar
  173. 15.139
    R. Nossal, S.H. Chen: Light scattering from mobile bacteria. J. Physique Suppl. 33, C1–171 (1972)CrossRefGoogle Scholar
  174. 15.140
    A. Andreoni, A. Longoni, C.A. Sacchi, O. Svelto: ‘Laser-induced fluorescence of biological molecules’. In: A. Mooradian, T. Jaeger, P. Stokseth (Eds.): Tunable Lasers and Applications, Springer Ser. Opt. Sci., Vol. 3 (Springer, Berlin, Heidelberg 1976) p. 303Google Scholar
  175. 15.141
    G.N. McGregor, H.G. Kaputza, K.A. Jacobsen: Laser-based fluorescence microscopy of living cells. Laser Focus 20, 85 (Nov. 1984)Google Scholar
  176. 15.142
    H. Schneckenburger, A. Rück, B. Baros, R. Steiner: Intracellular distribution of photosensitizing porphyrins measured by video-enhanced fluorescence microscopy. J. Photochem. Photobiol. B 2, 355 (1988)CrossRefGoogle Scholar
  177. 15.143 (a)
    H. Schneckenburger, A. Rück, O. Haferkamp: Energy transfer microscopy for probing mitochondrial deficiencies. Analyt. Chimica Acta 227, 227 (1988);CrossRefGoogle Scholar
  178. 15.143 (b)
    P. Fischer: Time-resolved methods in laser scanning microscopy. Laser Opt. Elektr. 24, 36 (Febr. 1992)Google Scholar
  179. 15.144
    H. Scheer: ‘Chemistry and spectroscopy of chlorophylls’. In: CRC Handbook of Organic Photochemistry and Photobiology, ed. by W.M. Horspool, P.S. Song (CRC, New York 1995) p. 1402;Google Scholar
  180. 15.144a
    P. Mathis: ‘Photosynthetic reaction centers’, In: CRC Handbook of Organic Photochemistry and Photobiology, ed. by W.M. Horspool, P.S. Song (CRC, New York 1995) p 1412Google Scholar
  181. 15.145
    I. Lutz, W. Zinth, et al.: ‘Primary reactions of sensory rhodopsins’. In: Ultrafast Phenomena XII, ed. by T. Eisäser, et al., Springer Series in Chem. Phys., Vol. 66 (Springer, Berlin, Heidelberg, New York 2000) p. 677–680;CrossRefGoogle Scholar
  182. 15.145a
    W. Zinth, et al.: ‘Femtosecond spectroscopy and model calculations for an understanding of the primary reactions in bacterio-rhodopson’. In: Ultrafast Phenomena XII, ed. by T. Eisäser, et al., Springer Series in Chem. Phys., Vol. 66 (Springer, Berlin, Heidelberg, New York 2000). p. 680CrossRefGoogle Scholar
  183. 15.146
    P.J. Walla, P.A. Linden, G.R. Fleming: Fs-transient absorption and fluorescence upconversion after two-photon excitation of carotenoids in solution and in LHC IF. In: Ultrafast Phenomena XII, ed. by T. Eisäser, et al., Springer Series in Chem. Phys., Vol. 66 (Springer, Berlin, Heidelberg, New York 2000). p.671CrossRefGoogle Scholar
  184. 15.147
    L. Goldstein (Ed.): Laser Non-Surgical Medicine. New Challenges for an Old Application (Lancaster, Basel 1991)Google Scholar
  185. 15.148
    G. Biamino, G. Müller (Eds.): Advances in Laser Medicine I (Ecomed. Verlagsgesell., Berlin 1988)Google Scholar
  186. 15.149
    S.L. Jacques (Ed.): Proc. Laser Tissue Interaction II. SPIE Proc. 1425 (1991);Google Scholar
  187. 15.149a
    A. Anders, I. Lamprecht, H. Schacter, H. Zacharias: The use of dye lasers for spectroscopic investigations and photodynamics therapy of human skin. Arch. Dermal. Res. 255, 211 (1976)CrossRefGoogle Scholar
  188. 15.150
    H.P. Berlien, G. Müller (Eds.): Angewandte Lasermedizin (Ecomed, Landsberg 1989)Google Scholar
  189. 15.151
    H. Albrecht, G. Müller, M. Schaldach: Entwicklung eines Raman- spektroskopisches Gasanalysesystems. Biomed. Tech. 22, 361 (1977);CrossRefGoogle Scholar
  190. 15.151a
    H. Albrecht, G. Müller, M. Schaldach: Proc. VII Int’l Summer School on Quantum Optics, Wiezyca, Poland (1979)Google Scholar
  191. 15.152
    M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, W. Urban: Recent developments on cavity ringdown spectroscopy with tunable cw lasers in the mid-infrared. Proc. SPIE 3758, 7 (1999)Google Scholar
  192. 15.153
    H.J. Foth, N. Stasche, K. Hörmann: Measuring the motion of the human tympanic membrane by laser Doppler vibrometry. SPIE Proc. 2083, 250 (1994)ADSCrossRefGoogle Scholar
  193. 15.154
    T.J. Dougherty, J.E. Kaulmann, A. Goldfarbe, K.R. Weishaupt, D. Boyle, A. Mittleman: Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38, 2628 (1978);Google Scholar
  194. 15.154a
    D. Kessel: Components of hematoporphyrin derivates and their tumor-localizing capacity. Cancer Res. 42, 1703 (1982)Google Scholar
  195. 15.155
    G. Jori: ‘Photodynamic therapy: basic and preclinical aspects’. In: CRC Handbook of Organic Photochemistry and Photobiology, ed. by W.M. Horspool, P.S. Song (CRC, New York 1995) p. 1379;Google Scholar
  196. 15.155a
    T.J. Dougherty: ‘Clinical applications of photodynamic therapy’, In: CRC Handbook of Organic Photochemistry and Photobiology, ed. by W.M. Horspool, P.S. Song (CRC, New York 1995) p. 1384Google Scholar
  197. 15.156
    P.J. Bugelski, C.W. Porter, T.J. Dougherty: Autoradiographic distribution of HPD in normal and tumor tissue in the mouse. Cancer Res. 41, 4606 (1981)Google Scholar
  198. 15.157
    A.S. Svanberg: Laser spectroscopy applied to energy, environmental and medical research. Phys. Scr. 23, 281 (1988)CrossRefGoogle Scholar
  199. 15.158
    Y. Hayata, H. Kato, Ch. Konaka, J. Ono, N. Takizawa: Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 81, 269 (1982)CrossRefGoogle Scholar
  200. 15.159
    A. Katzir: Optical Fibers in Medicine IV. SPIE Proc. 1067 (1989); ibid. 906 (1988)Google Scholar
  201. 15.160
    L. Prause, P. Hering: Lichtleiter für gepulste Laser: Transmissionsverhalten, Dämpfung und Zerstörungsschwellen. Laser Optoelektron. 19, 25 (January 1987); ibid. 20, 48 (May 1988)Google Scholar
  202. 15.161
    A. Katzir: Optical fibers in medicine. Sci. Am. 260, 86 (May 1989)CrossRefGoogle Scholar
  203. 15.162
    H. Schmidt-Kloiber, E. Reichel: ‘Laser lithotripsy’. In: H.P. Berlien, G. Müller (Eds.): Angewandte Lasermedizin (Ecomed, Landsberg 1989) VI, Sect. 2.12.1Google Scholar
  204. 15.163
    R. Steiner (Ed.): Laser Lithotripsy (Springer, Berlin, Heidelberg, New York 1988);Google Scholar
  205. 15.163a
    R. Pratesi, CA. Sacchi (Eds.): Lasers in Photomedicine and Photobiology, Springer Ser. Opt. Sci., Vol.31 (Springer, Berlin, Heidelberg 1982);Google Scholar
  206. 15.163b
    L. Goldmann (Ed.): The Biomedical Laser (Springer, Berlin, Heidelberg York 1981)Google Scholar
  207. 15.164
    W. Simon, P. Hering: Laser-induzierte Stoßwellenlithotripsie an Nieren- und Gallensteinen. Laser Optoelektron. 19, 33 (January 1987)Google Scholar
  208. 15.165
    D. Beaucamp, R. Engelhardt, P. Hering, W. Meyer: ‘Stone identification during laser-induced Shockwave lithotripsy’. In: Proc. 9th Congress Laser 89, ed. by W. Waidelich (Springer, Berlin, Heidelberg, New York 1990)Google Scholar
  209. 15.166
    R. Engelhardt, W. Meyer, S. Thomas, P. Oehlert: Laser-induzierte Schockwellen-Lithotripsie mit Mikrosekunden Laserpulsen. Laser Optoelektr. 20, 36 (April 1988)Google Scholar
  210. 15.167
    S.P. Dretler: Techniques of laser lithotripsy. J. Endourology 2, 123 (1988);CrossRefGoogle Scholar
  211. 15.167a
    B.C. Ihler: Laser lithotripsy: system and fragmentation processes closely examined. Laser Optoelektron. 24, 76 (April 1992)Google Scholar
  212. 15.168
    S. Willmann, A. Terenji, I.V. Yaroslavsky, T. Kahn, P. Hering: Determination of the optical properties of a human brain tumor using a new microspectrophoto-metric technique. Proc. SPIE 3598, 233 (1999)ADSCrossRefGoogle Scholar
  213. 15.169
    A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.J. Schwarzmaier: Influence of the scattering phase function approximation on the optical properties of blood. J. Biomedical Optics 4, 47 (1999)ADSCrossRefGoogle Scholar
  214. 15.170
    Check-Yin Ng (Ed.): Optical Methods for Time- and State Resolved Chemistry, SPIE Proc. 1638 (1992)Google Scholar
  215. 15.170a
    B.L. Feary (Ed.): Optical Methods for Ultrasensitive Dilution and Analysis. SPIE Proc. 1435 (1991);Google Scholar
  216. 15.170b
    J.L. McElroy, R.J. McNeal: Remote Sensing of the Atmosphere. SPIE Proc. 1491 (1991);Google Scholar
  217. 15.170c
    S.A. Akhmanov, M. Poroshina (Eds.): Laser Applications in Life Sciences. SPIE Proc. 1403 (1991);Google Scholar
  218. 15.170d
    L.O. Jvassand (Ed.): Future Trends in Biomedical Applications of Lasers. SPIE Proc. 1535 (1991);Google Scholar
  219. 15.170e
    J.R. Lakowicz (Ed.): Time-Resolved Laser Spectroscopy in Biochemistry. SPIE Proc. 1204 (1991);Google Scholar
  220. 15.170f
    R.R. Birge, L.A. Nafie: Biomolecular Spectroscopy. SPIE Proc. 1432 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations