Advertisement

New Developments in Laser Spectroscopy

  • Wolfgang Demtröder
Chapter
  • 1.3k Downloads
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

During the last few years several new ideas have been born and new spectroscopic techniques have been developed that not only improve the spectral resolution and increase the sensitivity for investigating single atoms but that also allow several interesting experiments for testing fundamental concepts of physics. In the historical development of science, experimental progress in the accuracy of measurements has often brought about a refinement of theoretical models or even the introduction of new concepts [14.1]. Examples include A. Einstein’s theory of special relativity based on the interferometric experiments of Michelson and Morley [14.2], M. Planck’s introduction of quantum physics for the correct explanation of the measured spectral distribution of blackbody radiation, the introduction of the concept of electron spin after the spectroscopic discovery of the fine structure in atomic spectra [14.3], or the test of quantum electrodynamics by precision measurements of the Lamb shift [14.4]. In this chapter some of these new and exciting developments are presented.

Keywords

Laser Spectroscopy Atomic Beam Rydberg Atom Beat Signal Natural Linewidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 14.1
    J.L. Hall: ‘Some remarks on the interaction between precision physical measurements and fundamental physical theories’. In: Quantum Optics, Experimental Gravity and Measurement Theory, ed. by P. Meystre, M.V. Scully (Plenum, New York 1983)Google Scholar
  2. 14.2
    A.I. Miller: Albert Einstein’s Special Theory of Relativity (Addison-Wesley, Reading, MA 1981);Google Scholar
  3. 14.2a
    J.L. Heilbron: Max Planck (Hirzel, Stuttgart 1988)Google Scholar
  4. 14.3
    H.G. Kuhn: Atomic Spectra, 2nd edn. (Longman, London 1971);Google Scholar
  5. 14.3a
    I.I. Sobelman: Atomic Spectra and Radiative Transitions, 2nd edn., Springer Ser. Atoms Plasmas, Vol. 12 (Springer, Berlin, Heidelberg, New York 1992)CrossRefGoogle Scholar
  6. 14.4
    W.E. Lamb Jr., R.C. Retherford: Fine-structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947);ADSCrossRefGoogle Scholar
  7. 14.4a
    W.E. Lamb Jr., R.C. Retherford: Fine-structure of the hydrogen atom by a microwave method. Phys. Rev. 79, 549 (1959)ADSCrossRefGoogle Scholar
  8. 14.5
    C. Salomon, J. Dalibard, W.D. Phillips, A. Clairon, S. Guellati: Laser cooling of cesium atoms below 3 µK. Europhys. Lett. 12, 683 (1990)ADSCrossRefGoogle Scholar
  9. 14.6
    H.J. Metcalf, P. van der Straaten: Laser Cooling and Trapping (Springer, Berlin, Heidelberg, New York 1999)CrossRefGoogle Scholar
  10. 14.7
    K. Sengstock, W. Ertmer: Laser manipulation of atoms. Adv. At. Mol. Opt. Phys. 35, 1 (1995)ADSCrossRefGoogle Scholar
  11. 14.8
    H. Frauenfelder: The Mössbauer Effect (Benjamin, New York 1963);Google Scholar
  12. 14.8a
    U. Gonser (Ed.): Mössbauer Spectroscopy, Topics Appl. Phys., Vol. 5 (Springer, Berlin, Heidelberg 1975)Google Scholar
  13. 14.9
    J.L. Hall: ‘Sub-Doppler spectroscopy: methane hyperfine spectroscopy and the ultimate resolution limit’. In: Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p. 105Google Scholar
  14. 14.10
    C.H. Bordé: ‘Progress in understanding sub-Doppler-line shapes’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977) p. 121Google Scholar
  15. 14.11
    S.N. Bagayev, A.E. Baklanov, V.P. Chebotayev, A.S. Dychkov, P.V. Pokuson: ‘Superhigh resolution laser spectroscopy with cold particles’. In: Laser Spectroscopy VIII, ed. by W. Pearson, S. Svanberg, Springer Ser. Opt. Sci., Vol. 55 (Springer, Berlin, Heidelberg, New York 1987) p. 95Google Scholar
  16. 14.12
    J.C. Berquist, R.L. Barger, D.L. Glaze: ‘High resolution spectroscopy of calcium atoms’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p. 120CrossRefGoogle Scholar
  17. 14.13
    B. Bobin, C. Bordé, C. Breaut: Vibration-rotation molecular constants for the ground state of SF6 from saturated absorption spectroscopy. J. Mol. Spectrosc. 121, 91 (1987)ADSCrossRefGoogle Scholar
  18. 14.14
    T.W. Hänsch, A.L. Schawlow: Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)ADSCrossRefGoogle Scholar
  19. 14.15
    W. Ertmer, R. Blatt, J.L. Hall: Some candidate atoms and ions for frequency standards research using laser radiative cooling techniques. Progr. Quantum Electron. 8, 249 (1984)ADSCrossRefGoogle Scholar
  20. 14.16
    W. Ertmer, R. Blatt, J.L. Hall, M. Zhu: Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal. Phys. Rev. Lett. 54 996 (1985)ADSCrossRefGoogle Scholar
  21. 14.17
    R. Blatt, W. Ertmer, J.L. Hall: Cooling of an atomic beam with frequency-sweep techniques. Progr. Quantum Electron. 8, 237 (1984)ADSCrossRefGoogle Scholar
  22. 14.18
    W.O. Phillips, J.V. Prodan, H.J. Metcalf: ‘Neutral atomic beam cooling, experiments at NBS’. In: NBS Special Publication No. 653 (US Dept. of Commerce, June 1983); Phys. Lett. 49, 1149 (1982)Google Scholar
  23. 14.19
    H. Metcalf: ‘Laser cooling and magnetic trapping of neutral atoms’. In: Methods of Laser Spectroscopy, ed. by Y. Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York 1986) p. 33CrossRefGoogle Scholar
  24. 14.20
    J.V. Prodan, W.O. Phillips: ‘Chirping the light-fantastic?’ In: Laser Cooled and Trapped Atoms, NBS Special Publication No. 653 (US Dept. Commerce, June 1983)Google Scholar
  25. 14.21
    D. Sesko, C.G. Fam, C.E. Wieman: Production of a cold atomic vapor using diode-laser cooling. J. Opt. Soc. Am. B 5, 1225 (1988)ADSCrossRefGoogle Scholar
  26. 14.22
    R.N. Watts, C.E. Wieman: Manipulating atomic velocities using diode lasers. Opt. Lett. 11, 291 (1986)ADSCrossRefGoogle Scholar
  27. 14.23
    B. Sheeby, S.Q. Shang, R. Watts, S. Hatamian, H. Metcalf: Diode laser deceleration and collimation of a rubidium beam. J. Opt. Soc. Am. B 6, 2165 (1989)ADSCrossRefGoogle Scholar
  28. 14.24
    H. Metcalf: Magneto-optical trapping and its application to helium metastables. J. Opt. Soc. Am. B 6, 2206 (1989)ADSCrossRefGoogle Scholar
  29. 14.25
    I.C.M. Littler, St. Balle, K. Bergmann: The CW modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88, 514 (1992)ADSCrossRefGoogle Scholar
  30. 14.26
    J. Hoffnagle: Proposal for continuous white-light cooling of an atomic beam. Opt. Lett. 13, 307 (1991)Google Scholar
  31. 14.27
    I.C.M. Littler, H.M. Keller, U. Gaubatz, K. Bergmann: Velocity control and cooling of an atomic beam using a modeless laser. Z. Physik D 18, 307 (1991)ADSCrossRefGoogle Scholar
  32. 14.28
    R. Schieder, H. Walther, L. Wöste: Atomic beam deflection by the light of a tunable dye laser. Opt. Commun. 5, 337 (1972)ADSCrossRefGoogle Scholar
  33. 14.29
    I. Nebenzahl, A. Szöke: Deflection of atomic beams by resonance radiation using stimulated emission. Appl. Phys. Lett. 25, 327 (1974)ADSCrossRefGoogle Scholar
  34. 14.30
    J. Nellesen, J.M. Müller, K. Sengstock, W. Ertmer: Large-angle beam deflection of a laser cooled sodium beam. J. Opt. Soc. Am. B 6, 2149 (1989)ADSCrossRefGoogle Scholar
  35. 14.31
    S. Villani (Ed.): Uranium Enrichment, Topics Appl. Phys., Vol.35 (Springer, Berlin, Heidelberg 1979)Google Scholar
  36. 14.32
    C.E. Tanner, B.P. Masterson, C.E. Wieman: Atomic beam collimation using a laser diode with a self-locking power buildup-cavity. Opt. Lett. 13, 357 (1988)ADSCrossRefGoogle Scholar
  37. 14.33
    J. Dalibard, C. Salomon, A. Aspect, H. Metcalf, A. Heidmann, C. Cohen-Tannoudji: ‘Atomic motion in a standing wave’. In: Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg, New York 1987) p. 81Google Scholar
  38. 14.34
    St. Chu, J.E. Bjorkholm, A. Ashkin, L. Holberg, A. Cable: ‘Cooling and trapping of atoms with laser light’. In: Methods of Laser Spectroscopy, ed. by Y Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York 1986) p. 41CrossRefGoogle Scholar
  39. 14.35
    T. Baba, I. Waki: Cooling and mass analysis of molecules using laser-cooled atoms. Jpn. J. Appl. Phys. 35, 1134 (1996)CrossRefGoogle Scholar
  40. 14.36
    J.T. Bahns, PL. Gould, WC. Stwalley: Formation of Cold (T < 1 K) Molecules. Adv. At. Mol. Opt. Phys. 42, 171 (2000)ADSCrossRefGoogle Scholar
  41. 14.37
    W.C. Stwalley: ‘Making Molecules at Microkelvin’. In: R. Campargue (Ed.): Atomic and Molecular Beams (Springer, Berlin, Heidelberg, New York 2001) p. 105CrossRefGoogle Scholar
  42. 14.38
    P. Pillet, F. Masnou-Seeuws, A. Crubelier: ‘Molecular photoassociation and ultracold molecules’. In: R. Campargue (Ed.): Atomic and Molecular Beams (Springer, Berlin, Heidelberg, New York 2001) p. 113CrossRefGoogle Scholar
  43. 14.39
    J.M. Doyle, B. Friedrich, J. Kim, D. Patterson: Buffer-gas loading of atoms and molecules into a magnetic trap. Phys. Rev. A 52, R2515 (1995)ADSCrossRefGoogle Scholar
  44. 14.40
    E. Lusovoj, J.P. Toennies, S. Grebenev, et al.: ‘Spectroscopy of molecules and unique clusters in superfluid He-droplets’. In: R. Campargue (Ed.): Atomic and Molecular Beams (Springer, Berlin, Heidelberg, New York 2001) p. 775Google Scholar
  45. 14.41
    S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov: The rotational spectrum of single OCS molecules in liquid 4He droplets. J. Chem. Phys. 112, 4485 (2000)ADSCrossRefGoogle Scholar
  46. 14.42
    V.S. Letokhov, V.G. Minogin, B.D. Pavlik: Cooling and capture of atoms and molecules by a resonant light field. Sov. Phys. JETP 45, 698 (1977);ADSGoogle Scholar
  47. 14.42a
    V.S. Letokhov, V.G. Minogin, B.D. Pavlik: Cooling and capture of atoms and molecules by a resonant light field. Opt. Commun. 19, 72 (1976)ADSCrossRefGoogle Scholar
  48. 14.43
    V.S. Letokhov, B.D. Pavlik: Spectral line narrowing in a gas by atoms trapped in a standing light wave. Appl. Phys. 9, 229 (1976)ADSCrossRefGoogle Scholar
  49. 14.44
    A. Ashkin, J.P. Gordon: Cooling and trapping of atoms by resonance radiation pressure. Opt. Lett. 4, 161 (1979)ADSCrossRefGoogle Scholar
  50. 14.45
    J.P. Gordon: Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14 (1973)ADSCrossRefGoogle Scholar
  51. 14.46
    M.H. Mittelman: Introduction to the Theory of Laser-Atom Interaction (Plenum, New York 1982)CrossRefGoogle Scholar
  52. 14.47
    J.E. Bjorkholm, R.R. Freeman, A. Ashkin, D.B. Pearson: ‘Transverse resonance radiation pressure on atomic beams and the influence of fluctuations’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol. 21 (Springer, Berlin, Heidelberg 1979) p. 49CrossRefGoogle Scholar
  53. 14.48
    R. Grimm, M. Weidemüller, YB. Ovchinnikov: Optical Dipole Traps for Neutral Atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  54. 14.49
    D.E. Pritchard, E.L. Raab, V. Bagnato, C.E. Wieman, R.N. Watts: Light traps using spontaneous forces. Phys. Rev. Lett. 57, 310 (1986);ADSCrossRefGoogle Scholar
  55. 14.49a
    H. Metcalf: Magneto-optical trapping and its application to helium metastables. J. Opt. Soc. Am. B 6, 2206 (1989)ADSCrossRefGoogle Scholar
  56. 14.50(a)
    J. Nellessen, J. Werner, W. Ertmer: Magneto-optical compression of a mo-noenergetic sodium atomic beam. Opt. Commun. 78, 300 (1990);ADSCrossRefGoogle Scholar
  57. 14.50(b)
    C. Monroe, W. Swann, H. Robinson, C. Wieman: Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 65, 1571 (1990)ADSCrossRefGoogle Scholar
  58. 14.51
    A.M. Steane, M. Chowdhury, C.J. Foot: Radiation force in the magneto-optical trap. J. Opt. Soc. Am. B 9, 2142 (1992)ADSCrossRefGoogle Scholar
  59. 14.52
    See, for instanceA.M. Steane, M. Chowdhury, C.J. Foot:, Feynman Lectures on Physics I (Addison-Wesley, Reading, MA 1965)Google Scholar
  60. 14.53
    S. Stenholm: The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986)ADSCrossRefGoogle Scholar
  61. 14.54
    A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji: Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. J. Opt. Soc. Am. B 6, 2112 (1989)ADSCrossRefGoogle Scholar
  62. 14.55
    J. Dalibard, C. Cohen-Tannoudji: Laser cooling below the Doppler limit by polarization gradients: simple theoretical model. J. Opt. Soc. Am. B 6, 2023 (1989);ADSCrossRefGoogle Scholar
  63. C. Cohen-Tannoudji: ‘New laser cooling mechanisms’. In: Laser Manipulation of Atoms and Ions, ed. by A. Arimondo, W.D. Phillips, F. Strumia (North-Holland, Amsterdam 1992) p. 99Google Scholar
  64. 14.56
    D.S. Weiss, E. Riis, Y. Shery, P. Jeffrey Ungar, St. Chu: Optical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B 6, 2072 (1989)ADSCrossRefGoogle Scholar
  65. 14.57
    P.J. Ungar, D.S. Weiss, E. Riis, St. Chu: Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058 (1989)ADSCrossRefGoogle Scholar
  66. 14.58
    C. Cohen-Tannoudji, WD. Phillips: New mechanisms for laser cooling. Physics Today 43, 33 (October 1990)CrossRefGoogle Scholar
  67. 14.59
    S. Martelucci (Ed.): Bose-Einstein Condensates and Atom Laser (Kluwer Academic, New York 2000);Google Scholar
  68. 14.59a
    A. Griffin, D.W. Snoke, S. Stringali (Eds.): Bose-Einstein Condensation (Cambridge Univ. Press, Cambridge 1995)Google Scholar
  69. 14.60
    W. Ketterle, N.J. van Druten: Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)ADSCrossRefGoogle Scholar
  70. 14.61
    A. Crubellier, O. Dulieu, F. Masnou-Seeuws, H. Knöckel, E. Tiemann: Simple determination of scattering length using observed bound levels at the ground state asymptote. Europhys. J. D 6, 211 (1999)ADSGoogle Scholar
  71. 14.62
    H. Weickenmeier, U. Diemer, W. Demtröder, M. Broyer: Hyperfine-interaction between the singlet and triplet ground states and Cs2. Chem. Phys. Lett. 124, 470 (1986)ADSCrossRefGoogle Scholar
  72. 14.63
    K. Rubin, M.S. Lubell: ‘A proposed study of photon statistics in fluorescence through high resolution measurements of the transverse deflection of an atomic beam’. In: Laser Cooled and Trapped Atoms, NBS Special Publ. No. 653 (June 1983) p. 119Google Scholar
  73. 14.64
    Y.Z. Wang, WG. Huang, YD. Cheng, L. Liu: Test of photon statistics by atomic beam deflection’. In: Laser Spectroscopy VII, ed. by T.W. Hänsch, YR. Shen, Springer Ser. Opt. Sci., Vol.49 (Springer, Berlin, Heidelberg, New York 1985) p. 238CrossRefGoogle Scholar
  74. 14.65
    V.M. Akulin, F.L. Kien, W.P. Schleich: Deflection of atoms by a quantum field. Phys. Rev. A 44, R1462 (1991)ADSCrossRefGoogle Scholar
  75. 14.66
    W. Ertmer, S. Penselin: Cooled atomic beams for frequency standards. Metrologia 22, 195 (1986);ADSCrossRefGoogle Scholar
  76. C. Salomon: ‘Laser cooling of atoms and ion trapping for frequency standards’. In: Metrology at the Frontiers of Physics and Technology, ed. by L. Crovini, T.J. Quinn (North-Holland, Amsterdam 1992) p. 405Google Scholar
  77. 14.67
    J.L. Hall, M. Zhu, P. Buch: Prospects for using laser prepared atomic fountains for optical frequency standards applications. J. Opt. Soc. Am. B 6, 2194 (1989)ADSCrossRefGoogle Scholar
  78. 14.68
    E.D. Commins: Electric dipole moments of leptons. Adv. At. Mol. Opt. Phys. 40, 1 (1999)ADSCrossRefGoogle Scholar
  79. 14.69
    F.M.H. Crompfoets, H.L. Bethlem, R.T. Jongma, G. Meyer: A prototype storage ring for neutral molecules. Nature 411, 174 (2001)ADSCrossRefGoogle Scholar
  80. 14.70
    B. Friedrich: Slowing of supersonically cooled atoms and molecules by time-varying nonresonant dipole forces. Phys. Rev. A 61, 025403 (2000)ADSCrossRefGoogle Scholar
  81. 14.71
    W. Paul, M. Raether: Das elektrische Massenfilter. Z. Physik 140, 262 (1955);ADSCrossRefGoogle Scholar
  82. 14.71a
    W. Paul: Elektromagnetische Käfige für geladene und neutrale Teilchen. Phys. Blätter 46, 227 (1990)CrossRefGoogle Scholar
  83. 14.72
    E. Fischer: Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld. Z. Physik 156, 1 (1959)ADSCrossRefGoogle Scholar
  84. 14.73
    G.H. Dehmelt: Radiofrequency spectroscopy of stored ions. Adv. At. Mol. Phys. 3, 53 (1967);ADSCrossRefGoogle Scholar
  85. 14.73
    G.H. Dehmelt: Radiofrequency spectroscopy of stored ions.Adv. At. Mol. Phys. 5, 109 (1969)ADSCrossRefGoogle Scholar
  86. 14.74a
    R.E. Drullinger, D.J. Wineland: Laser cooling of ions bound to a penning trap. Phys. Rev. Lett. 40, 1639 (1978)ADSCrossRefGoogle Scholar
  87. 14.75
    See, for instance, E.T Whittacker, S.N. Watson: A Course of Modern Analysis (Cambridge Univ. Press, Cambridge 1963);Google Scholar
  88. J. Meixner, F.W. Schaefke: Mathieusche Funktionen und Sphäroidfunktionen (Springer, Berlin, Göttingen, Heidelberg 1954)CrossRefGoogle Scholar
  89. 14.76
    P.E. Toschek, W. Neuhauser: ‘Spectroscopy on localized and cooled ions’. In: Atomic Physics Vol 7, ed. by D. Kleppner, F.M. Pipkin (Plenum, New York 1981)Google Scholar
  90. 14.77
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, H.G. Dehmelt: Visual observation and optical cooling of electrodynamically contained ions. Appl. Phys. 17, 123 (1978)ADSCrossRefGoogle Scholar
  91. 14.78
    P.E. Toschek, W. Neuhauser: Einzelne Ionen für die Doppler-freie Spektroskopie. Phys. Blätter 36, 1798 (1980)CrossRefGoogle Scholar
  92. 14.79
    T. Sauter, H. Gilhaus, W. Neuhauser, R. Blatt, P.E. Toschek: Kinetics of a single trapped ion. Europhys. Lett. 7, 317 (1988)ADSCrossRefGoogle Scholar
  93. 14.80
    R.E. Drullinger, D.J. Wineland: ‘Laser cooling of ions bound to a Penning trap’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rother, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p.66;CrossRefGoogle Scholar
  94. 14.80
    R.E. Drullinger, D.J. Wineland: ‘Laser cooling of ions bound to a Penning trap’. Phys. Rev. Lett. 40, 1639 (1978)ADSCrossRefGoogle Scholar
  95. 14.81
    D.J. Wineland, W.M. Itano: Laser cooling of atoms. Phys. Rev. A 20, 1521 (1979)ADSCrossRefGoogle Scholar
  96. 14.82
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, H. Dehmelt: Optical sideband cooling of visible atom cloud confined in a parabolic well. Phys. Rev. Lett. 41, 233 (1978)ADSCrossRefGoogle Scholar
  97. 14.83
    H.G. Dehmelt: Proposed 1014Δν < ν laser fluorescence spectroscopy on a T1+ mono-ion oscillator. Bull. Am. Phys. 20, 60 (1975)Google Scholar
  98. 14.84
    P.E. Toschek: Absorption by the numbers: recent experiments with single trapped and cooled ions. Phys. Scripta T 23, 170 (1988)ADSCrossRefGoogle Scholar
  99. 14.85
    T. Sauter, R. Blatt, W. Neuhauser, P.E. Toschek: Quantum jumps in a single ion. Phys. Scripta 22, 128 (1988);CrossRefGoogle Scholar
  100. 14.85a
    T. Sauter, R. Blatt, W. Neuhauser, P.E. Toschek: Quantum jumps in a single ion. Opt. Commun. 60, 287 (1986)ADSCrossRefGoogle Scholar
  101. 14.86
    W.M. Itano, J.C. Bergquist, R.G. Hulet, D.J. Wineland: The observation of quantum jumps in Hg+,. In: Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg, New York 1987) p. 117Google Scholar
  102. 14.87
    F. Diedrich, H. Walther: Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203 (1987)ADSCrossRefGoogle Scholar
  103. 14.88
    R. Bliimel, J.M. Chen, E. Peik, W. Quint, W. Schleich, Y.R. Chen, H. Walther: Phase transitions of stored laser-cooled ions. Nature 334, 309 (1988)ADSCrossRefGoogle Scholar
  104. 14.89
    F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther: Ionenkristalle und Phasenübergänge in einer Ionenfalle. Phys. Blätter 44, 12 (1988)CrossRefGoogle Scholar
  105. 14.90
    F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther: Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59, 2931 (1987)ADSCrossRefGoogle Scholar
  106. 14.91
    R. Bliimel, C. Kappler, W. Quint, H. Walther: Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 40, 808 (1989)ADSCrossRefGoogle Scholar
  107. 14.92
    J. Javamainen: Laser cooling of trapped ion-clusters. J. Opt. Soc. Am. B 5, 73 (1988)ADSCrossRefGoogle Scholar
  108. 14.93
    D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney: Atomic-ion Coulomb clusters in an ion trap. Phys. Rev. Lett. 59, 2935 (1987);ADSCrossRefGoogle Scholar
  109. W. Quint: Chaos und Ordnung von lasergekühlten Ionen in einer Paulfalle. Dissertation, MPQ-Berichte 150, MPQ für Quantenoptik, Garching (1990)Google Scholar
  110. 14.94
    Th.V. Kühl: Storage ring laser spectroscopy. Adv. At. Mol. Opt. Phys. 40, 113 (1999)ADSCrossRefGoogle Scholar
  111. 14.95
    H. Poth: Applications of electron cooling in atomic, nuclear and high energy physics. Nature 345, 399 (1990)ADSCrossRefGoogle Scholar
  112. 14.96 (a)
    J.P. Schiffer: Layered structure in condensed cold one-component plasma confined in external fields. Phys. Rev. Lett. 61, 1843 (1988)ADSCrossRefGoogle Scholar
  113. (b).
    I. Waki, S. Kassner, G. Birkl, H. Walther: Observation of ordered structures of laser-cooled ions in a quadrupole storage ring. Phys. Rev. Lett. 68, 2007 (1992)ADSCrossRefGoogle Scholar
  114. 14.97
    J.S. Hängst, M. Kristensen, J.S. Nielsen, O. Poulsen, J.P. Schiffer, P. Shi: Laser cooling of a stored ion beam to 1 mK. Phys. Rev. Lett. 67, 1238 (1991)ADSCrossRefGoogle Scholar
  115. 14.98
    U. Schramm, et al.: Observation of laser-induced recombination in merged electron and proton beams. Phys. Rev. Lett. 67, 22 (1991)ADSCrossRefGoogle Scholar
  116. 14.99
    T.C. English, J.C. Zorn: ‘Molecular beam spectroscopy’. In: Methods of Experimental Physics, Vol. 3, ed. by D. Williams (Academic, New York 1974)Google Scholar
  117. 14.100
    I.I. Rabi: Zur Methode der Ablenkung von Molekularstrahlen. Z. Physik 54, 190 (1929)ADSCrossRefGoogle Scholar
  118. 14.101
    N.F. Ramsey: Molecular Beams, 2nd edn. (Clarendon, Oxford 1989)Google Scholar
  119. 14.102
    J.C. Bergquist, S.A. Lee, J.L. Hall: ‘Ramsey fringes in saturation spectroscopy’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten (Springer, Berlin, Heidelberg 1977)Google Scholar
  120. 14.103
    Y.V. Baklanov, B.Y. Dubetsky, V.P. Chebotayev: Nonlinear Ramsey resonance in the optical region. Appl. Phys. 9, 171 (1976)ADSCrossRefGoogle Scholar
  121. 14.104
    V.P. Chebotayev: The method of separated optical fields for two level atoms. Appl. Phys. 15, 219 (1978)ADSCrossRefGoogle Scholar
  122. 14.105
    C. Bordé: Sur les franges de Ramsey en spectroscopic sans élargissement Doppler. CR. Acad. Sc. (Paris) Serie B 282, 101 (1977)Google Scholar
  123. 14.106
    S.A. Lee, J. Helmcke, J.L. Hall, P. Stoicheff: Doppler-free two-photon transitions to Rydberg levels. Opt. Lett. 3, 141 (1978)ADSCrossRefGoogle Scholar
  124. 14.107
    S.A. Lee, J. Helmcke, J.L. Hall: ‘High-resolution two-photon spectroscopy of Rb Rydberg levels’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p. 130CrossRefGoogle Scholar
  125. 14.108
    Y.V. Baklanov, V.P. Chebotayev, B.Y. Dubetsky: The resonance of two-photon absorption in separated optical fields. Appl. Phys. 11, 201 (1976)ADSCrossRefGoogle Scholar
  126. 14.109
    S.N. Bagayev, V.P. Chebotayev, A.S. Dychkov: Continuous coherent radiation in methane at λ = 3.39 µm in spatially separated fields. Appl. Phys. 15, 209 (1978)ADSCrossRefGoogle Scholar
  127. 14.110
    C.J. Bordé: ‘Density matrix equations and diagrams for high resolution nonlinear laser spectroscopy: application to Ramsey fringes in the optical domain’. In: Advances in Laser Spectroscopy, ed. by F.T. Arrecchi, F. Strumia, H. Walther (Plenum, New York 1983) p. 1CrossRefGoogle Scholar
  128. 14.111
    J.C. Bergquist, S.A. Lee, J.L. Hall: Saturated absorption with spatially separated laser fields. Phys. Rev. Lett. 38, 159 (1977)ADSCrossRefGoogle Scholar
  129. 14.112
    J. Helmcke, D. Zevgolis, B.U. Yen: Observation of high contrast ultra narrow optical Ramsey fringes in saturated absorption utilizing four interaction zones of travelling waves. Appl. Phys. B 28, 83 (1982)Google Scholar
  130. 14.113
    C.J. Bordé, C. Salomon, S.A. Avrillier, A. Van Lerberghe, C. Breant, D. Bassi, G. Scoles: Optical Ramsey fringes with travelling waves. Phys. Rev. A 30, 1836 (1984)ADSCrossRefGoogle Scholar
  131. 14.114
    J.C. Bergquist, R.L. Barger, P.J. Glaze: ‘High resolution spectroscopy of calcium atoms’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p. 120CrossRefGoogle Scholar
  132. 14.115
    J. Helmcke, J. Ishikawa, F. Riehle: ‘High contrast high resolution single component Ramsey fringes in Ca’. In: Frequency Standards and Metrology, ed. by A. De Marchi (Springer, Berlin, Heidelberg, New York 1989) p. 270CrossRefGoogle Scholar
  133. 14.116
    F. Riehle, J. Ishikawa, J. Helmcke: Suppression of recoil component in nonlinear Doppler-free spectroscopy. Phys. Rev. Lett. 61, 2092 (1988)ADSCrossRefGoogle Scholar
  134. 14.117
    See, for instance, J. Mlynek, V. Balykin, P. Meystere (Guest Eds.): Atom inter-ferometry. Appl. Phys. B 54, 319–368 (1992);Google Scholar
  135. 14.117a
    SC.S. Adams, M. Siegel, J. Mlynek: Atom optics. Phys. Rpt. 240, 144 (1994)ADSGoogle Scholar
  136. 14.118
    P. Bermann (Ed.): Atom Interferometry (Academic, San Diego 1997)Google Scholar
  137. 14.119
    O. Carnal, J. Mlynek: Young’s double slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689 (1991)ADSCrossRefGoogle Scholar
  138. 14.120
    D.W. Keith, C.R. Ekstrom, Q.A. Turchette, D.E. Pritchard: An interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991)ADSCrossRefGoogle Scholar
  139. 14.121
    C.J. Bordé: Atomic interferometry with internal state labelling. Phys. Lett. A 140, 10 (1989)ADSCrossRefGoogle Scholar
  140. 14.122
    F. Riehle, A. Witte, T. Kisters, J. Helmcke: Interferometry with Ca atoms. Appl. Phys. B 54, 333 (1992)ADSCrossRefGoogle Scholar
  141. 14.123
    M. Kasevich, S. Chu: Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54, 321 (1992)ADSCrossRefGoogle Scholar
  142. 14.124
    M.R. Andrews, C.G. Townsend, H.J. Miesner, D.S. Durfee, D.M. Kurn, W. Ket-terle: Observation of interference between two Bose condensates. Science 275, 637 (1997)CrossRefGoogle Scholar
  143. 14.125
    I. Block, T.W. Hänsch, T. Esslinger: Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008 (1999)ADSCrossRefGoogle Scholar
  144. 14.126
    S. Martellucci, A.N. Chester, A. Aspect, M. Inguscio (Eds.): Bose-Einstein Condensates and Atom Lasers (Kluwer/Plenum, New York 2000)Google Scholar
  145. 14.127
    F. Diedrich, J. Krause, G. Rempe. M.O. Scully, H. Walther: Laser experiments on single atoms and the test of basic physics. Physica B 151, 247 (1988);CrossRefGoogle Scholar
  146. 14.127a
    F. Diedrich, J. Krause, G. Rempe. M.O. Scully, H. Walther: Laser experiments on single atoms and the test of basic physics. IEEE J. QE-24, 1314 (1988)Google Scholar
  147. 14.128
    S. Haroche, J.M. Raimond: Radiative properties of Rydberg states in resonant cavities. Adv. At. Mol. Phys. 20, 347 (1985)ADSCrossRefGoogle Scholar
  148. 14.129
    G. Rempe, H. Walther: ‘The one-atom maser and cavity quantum electrodynamics’. In: Methods of Laser Spectroscopy, ed. by Y. Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York 1986)Google Scholar
  149. 14.130
    H. Walther: Single-atom oscillators. Europhys. News 19, 105 (1988)Google Scholar
  150. 14.131
    G. Rempe, M.O. Scully, H. Walther: ‘The one-atom maser and the generation of nonclassical light’. In: Proc. ICAP 12, Ann Arbor (1990)Google Scholar
  151. 14.132
    P. Meystre, G. Rempe, H. Walther: Very low temperature behaviour of a micromaser. Opt. Lett. 13, 1078 (1988)ADSCrossRefGoogle Scholar
  152. 14.133
    G. Rempe, H. Walther: Sub-Poissonian atomic statistics in a micromaser. Phys. Rev. A 42, 1650 (1990)ADSCrossRefGoogle Scholar
  153. 14.134
    B.T. Varcoe, S. Brattke, M. Weidinger, H. Walther: Preparing pure photon number states of the radiatium field. Nature 403, 743 (2000)ADSCrossRefGoogle Scholar
  154. 14.135
    M. Marrocco, M. Weidinger, R.T. Sang, H. Walther: Quantum electrodynamic shifts of Rydberg energy levels between two parallel plates. Phys. Rev. Lett. 81, 5784 (1998)ADSCrossRefGoogle Scholar
  155. 14.136
    H. Metcalf, W. Phillips: Time resolved subnatural width spectroscopy. Opt. Lett. 5, 540 (1980)ADSCrossRefGoogle Scholar
  156. 14.137
    J.N. Dodd, G.W. Series: ‘Time-resolved fluorescence spectroscopy’. In: Progr. Atomic Spectroscopy A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978)Google Scholar
  157. 14.138
    S. Schenk, R.C. Hilburn, H. Metcalf: Time resolved fluorescence from Ba and Ca, excited by a pulsed tunable dye laser. Phys. Rev. Lett. 31, 189 (1973)ADSCrossRefGoogle Scholar
  158. 14.139
    H. Figger, H. Walther: Optical resolution beyond the natural linewidth: a level crossing experiment on the 32P3/2 level of sodium using a tunable dye laser. Z. Physik 267, 1 (1974)ADSCrossRefGoogle Scholar
  159. 14.140
    F. Shimizu, K. Umezu, H. Takuma: Observation of subnatural linewidth in Na D2-lines. Phys. Rev. Lett. 47, 825 (1981)ADSCrossRefGoogle Scholar
  160. 14.141
    G. Bertuccelli, N. Beverini, M. Galli, M. Inguscio, F. Strumia: Subnatural coherence effects in saturation spectroscopy using a single travelling wave. Opt. Lett. 10, 270 (1985)ADSCrossRefGoogle Scholar
  161. 14.142
    P. Meystre, M.O. Scully, H. Walther: Transient line narrowing: a laser spectroscopic technique yielding resolution beyond the natural linewidth. Opt. Commun. 33, 153 (1980)ADSCrossRefGoogle Scholar
  162. 14.143
    A. Guzman, P. Meystre, M.O. Scully: ‘Subnatural spectroscopy’. In: Adv. Laser Spectroscopy, ed. by F.T. Arecchi, F. Strumia, H. Walther (Plenum, New York 1983) p. 465CrossRefGoogle Scholar
  163. 14.144
    v.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977)CrossRefGoogle Scholar
  164. 14.145
    R.P. Hackel, S. Ezekiel: Observation of subnatural linewidths by two-step resonant scattering in I2-vapor. Phys. Rev. Lett. 42, 1736 (1979); and in [Ref. 1.11b, p. 88]ADSCrossRefGoogle Scholar
  165. 14.146
    H. Weickenmeier, U. Diemer, W. Demtröder, M. Broyer: Hyperfine interaction between the singlet and triplet ground states of Cs2. Chem. Phys. Lett. 124, 470 (1986)ADSCrossRefGoogle Scholar
  166. 14.147
    E.R. Cohen, B.N. Taylor: The 1986 CODATA recommended values of the fundamental physical constants. J. Phys. Chem. Ref. Data 17, 1795 (1988)ADSCrossRefGoogle Scholar
  167. 14.148
    F. Bayer-Helms: Neudefinition der Basiseinheit Meter im Jahr 1983. Phys. Blätter 39, 307 (1983);CrossRefGoogle Scholar
  168. 14.148a
    F. Bayer-Helms: Documents concerning the new definition of the metre. Metrologia 19, 163 (1984)CrossRefGoogle Scholar
  169. 14.149
    K.M. Baird: Frequency measurements of optical radiation. Phys. Today 36, 1 (January 1983)CrossRefGoogle Scholar
  170. 14.150
    K.M. Evenson, D.A. Jennings, F.R. Peterson, J. S Wells: ‘Laser frequency measurements: A. Review, limitations, extension to 197 THz (1.5 µm)’. In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977);Google Scholar
  171. 14.150a
    D.A. Jennings, F.R. Peterson, K.M. Evenson: ‘Direct frequency measurement of the 260THz (1.15 µm) 20Ne laser: And beyond’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p. 39CrossRefGoogle Scholar
  172. 14.151
    K.M. Evenson, M. Inguscio, D.A. Jennings: Point contact diode at laser frequencies. J. Appl. Phys. 57, 956 (1985)ADSCrossRefGoogle Scholar
  173. 14.152
    L.R. Zink, M. Prevedelli, K.M. Evenson, M. Inguscio: ‘High resolution far infrared spectroscopy’. In: Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York 1991) p. 141Google Scholar
  174. 14.153
    H.V. Daniel, B. Maurer, M. Steiner: A broadband Schottky point contact mixer for visible laser light and microwave harmonics. J. Appl. Phys. B 30, 189 (1983)ADSCrossRefGoogle Scholar
  175. 14.154
    H.P. Roeser, R.V. Titz, G.W. Schwaab, M.F. Kimmit: Current-frequency characteristics of submicron GaAs Schottky barrier diodes with femtofarad capacitances. J. Appl. Phys. 72, 3194 (1992)ADSCrossRefGoogle Scholar
  176. 14.155(a)
    B.G. Whitford: Phase-locked frequency chains to 130 THz at NRC. In: Frequency Standards and Metrology, ed. by A. De Marchi (Springer, Berlin, Heidelberg, New York 1989);Google Scholar
  177. (b).
    T.W. Hänsch: ‘High resolution spectroscopy of hydrogen’. In: The Hydrogen Atom, ed. by G.F. Bussani, M. Inguscio, T.W. Hänsch (Springer, Berlin, Heidelberg, New York 1989);Google Scholar
  178. (c).
    S.G. Karshenboim, F.S. Pavone, G.F. Bussani, M. Inguscio, T.W. Hänsch (Eds.): The Hydrogen Atom (Springer, Berlin, Heidelberg, New York 2001)Google Scholar
  179. 14.156
    J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, T.W. Hansen: Phase coherent vacuum ultraviolet to radiofrequency comparison with a mode-locked laser. Phys. Rev. Lett. 84, 3232 (2000)ADSCrossRefGoogle Scholar
  180. 14.157
    S.A. Diddams, T.W. Hänsch, et al.: Direct link between microwave and optical frequencies with a 300 THz femtosecond pulse. Phys. Rev. Lett. 84, 5102 (2000)ADSCrossRefGoogle Scholar
  181. 14.158
    R. Loudon: The Quantum Theory of Light (Clarendon, Oxford 1973)Google Scholar
  182. 14.159
    H. Gerhardt, H. Welling, A. Güttner: Measurements of laser linewidth due to quantum phase and quantum amplitude noise above and below threshold. Z. Physik 253, 113 (1972);ADSCrossRefGoogle Scholar
  183. 14.159a
    M. Zhu, J.L. Hall: Stabilization of optical phase/frequency of a laser system. J. Opt. Soc. Am. B 10, 802 (1993)ADSCrossRefGoogle Scholar
  184. 14.160
    H.A. Bachor, P.J. Manson: Practical implications of quantum noise. J. Mod. Opt. 37, 1727 (1990);ADSCrossRefGoogle Scholar
  185. 14.160a
    H.A. Bachor, P.T. Fisk: Quantum noise — a limit in photodetection. Appl. Phys. B 49, 291 (1989)ADSCrossRefGoogle Scholar
  186. 14.161
    H.A. Bachor: A Guide to Experiments in Quantum Optics (Wiley VCH, Weinheim 1998)zbMATHGoogle Scholar
  187. 14.162
    R.J. Glauber: Optical coherence and photon statistics’. In: Quantum Optics and Electronics, ed. by C. De Witt, A. Blandia, C. Cohen-Tannoudji (Gordon & Breach, New York 1965) p. 65;Google Scholar
  188. 14.162a
    J.D. Cresser: Theory of the spectrum of the quantized light field. Phys. Rpt. 94, 48 (1983);MathSciNetADSGoogle Scholar
  189. 14.162b
    H. Paul: Squeezed states — nichtklassische Zustände des Strahlungsfeldes. Laser und Optoelektronik 19, 45 (März 1987)Google Scholar
  190. 14.163
    R.E. Slusher, L.W. Holberg, B. Yorke, J.C. Mertz, J.F. Valley: Observation of squeezed states generated by four wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)ADSCrossRefGoogle Scholar
  191. 14.164
    M. Xiao, L.A. Wi, H.J. Kimble: Precision measurements beyond the shot noise limit. Phys. Rev. Lett. 59, 278 (1987)ADSCrossRefGoogle Scholar
  192. 14.165
    H.J. Kimble, D.F. Walls (Guest ceds.): Feature issue on squeezed states of the electromagnetic field. J. Opt. Soc. Am. B 4, 1449 (1987);ADSCrossRefGoogle Scholar
  193. P. Kurz, R. Paschotta, K. Fiedler, J. Mlynek: Bright squeezed light by second harmonic generation and monolytic resonator. Europhys. Lett. 24, 449 (1993)ADSCrossRefGoogle Scholar
  194. 14.166
    T.M. Niebaum, A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, K. Danz-mann: Pulsar search using data compression with the Garching gravitational wave detector. Phys. Rev. D 47, 3106 (1993)ADSCrossRefGoogle Scholar
  195. 14.167
    P.G. Blair (Ed.): The Detection of Gravitational Waves (Cambridge Univ. Press, Cambridge 1991)Google Scholar
  196. 14.168
    P.S. Saulson: Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore 1994)CrossRefGoogle Scholar
  197. 14.169
    K. Zaheen, M.S. Zubairy: Squeezed states of the radiation field. Adv. At. Mol. Phys. 28, 143 (1991)ADSGoogle Scholar
  198. 14.170
    H.J. Kimble: Squeezed states of light. Adv. Chem. Phys. 38, 859 (1989)CrossRefGoogle Scholar
  199. 14.171
    P. Tombesi, E.R. Pikes (Eds.): Squeezed and Nonclassical Light (Plenum, New York 1989)Google Scholar
  200. 14.172
    E. Giacobino, C. Fabry (Guest Eds.): Quantum noise reduction in optical systems. Appl. Phys. B 55, 187–297 (1992)Google Scholar
  201. 14.173
    D.F. Walls, G.J. Milburn: Quantum Optics, study edn. (Springer, Berlin, Heidelberg, New York 1995)Google Scholar
  202. 14.174
    H.A. Haus: Electromagnetic Noise and Quantum Optical Measurements (Springer, Berlin, Heidelberg, New York 2000)zbMATHCrossRefGoogle Scholar
  203. 14.175
    H.J. Carmichael, R.J. Glauber, M.O. Scully (Eds.): Directions in Quantum Optics (Springer, Berlin, Heidelberg, New York 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations