Optical Pumping and Double-Resonance Techniques

  • Wolfgang Demtröder
Part of the Advanced Texts in Physics book series (ADTP)


Optical pumping means selective population or depletion of atomic or molecular levels by aborption of radiation, resulting in a population change ΔN in these levels, which causes a noticeable deviation from the thermal equilibrium population. With intense atomic resonance lines emitted from hollow-cathode lamps or from microwave discharge lamps, optical pumping had successfully been used for a long time in atomic spectroscopy, even before the invention of the laser [10.1, 10.2]. However, the introduction of lasers as very powerful pumping sources with narrow linewidths has substantially increased the application range of optical pumping. In particular, lasers have facilitated the transfer of this well-developed technique to molecular spectroscopy. While early experiments on optical pumping of molecules [10.3, 10.4] were restricted to accidental coincidences between molecular absorption lines and atomic resonance lines from incoherent sources, the possibility of tuning a laser to the desired molecular transition provides a much more selective and effective pumping process. It allows, because of the larger intensity, a much larger change ΔN i = N i0 - N i of the population density in the selected level |i〉 from its unsaturated value N i0 at thermal equilibrium to a nonequilibrium value N i .


Probe Beam Pump Laser Probe Laser Rydberg State Rydberg Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 10.1
    R.A. Bernheim: Optical Pumping, an Introduction (Benjamin, New York 1965)Google Scholar
  2. 10.2
    B. Budick: ‘Optical pumping methods in atomic spectroscopy’. In: Adv. At. Mol. Phys. 3, 73 (Academic, New York 1967)Google Scholar
  3. 10.3
    R.N. Zare: ‘Optical pumping of molecules’. In: Int’l Colloquium on Doppler-Free Spectroscopic Methods for Simple Molecular Systems (CNRS, Paris 1974) p. 29Google Scholar
  4. 10.4
    M. Broyer, G. Gouedard, J.C. Lehmann, J. Vigue: ‘Optical pumping of molecules’. In: Adv. At. Mol. Phys. 12, 164 (Academic, New York 1976).ADSGoogle Scholar
  5. 10.5
    G. zu Putlitz: ‘Determination of nuclear moments with optical double resonance’. Springer Tracts Mod. Phys. 37, 105 (Springer, Berlin, Heidelberg 1965).ADSCrossRefGoogle Scholar
  6. 10.6
    C. Cohen-Tannoudji: ‘Optical pumping with lasers.’ In: Atomic Physics IV, ed. by G. zu Putlitz, E.W. Weber, A. Winnacker (Plenum, New York 1975) p. 589.CrossRefGoogle Scholar
  7. 10.7
    R.N. Zare: Angular Momentum (Wiley, New York 1988).Google Scholar
  8. 10.8
    R.E. Drullinger, R.N. Zare: Optical pumping of molecules. J. Chem. Phys. 51, 5532 (1969).ADSCrossRefGoogle Scholar
  9. 10.9
    K. Bergmann: ‘State selection via optical methods’. In: Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, Oxford 1988) p. 293.Google Scholar
  10. 10.10
    H.G. Weber, P. Brucat, W. Demtröder, R.N. Zare: Measurement of NO2 2B2 state g-values by optical radio frequency double-resonance. J. Mol. Spectrosc. 75, 58 (1979)ADSCrossRefGoogle Scholar
  11. 10.11
    W. Happer: Optical pumping. Rev. Mod. Phys. 44, 168 (1972)ADSCrossRefGoogle Scholar
  12. 10.12
    B. Decomps, M. Dumont, M. Ducloy: ‘Linear and nonlinear phenomena in laser optical pumping’. In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976) p.284Google Scholar
  13. 10.13
    G.W. Series: Thirty years of optical pumping. Contemp. Phys. 22, 487 (1981)ADSCrossRefGoogle Scholar
  14. 10.14
    I.I. Rabi: Zur Methode der Ablenkung von Molekularstrahlen. Z. Physik 54, 190 (1929)ADSCrossRefGoogle Scholar
  15. 10.15
    H. Kopfermann: Kernmomente (Akad. Verlagsanstalt, Frankfurt 1956)zbMATHGoogle Scholar
  16. 10.16
    N.F. Ramsay: Molecular Beams, 2nd edn. (Clarendon, Oxford 1989)Google Scholar
  17. 10.17
    J.C. Zorn, T.C. English: ‘Molecular beam electric resonance spectroscopy’. In: Adv. At. Mol. Phys. 9, 243 (Academic, New York 1973)Google Scholar
  18. 10.18
    D.D. Nelson, G.T. Fraser, K.I. Peterson, K. Zhao, W. Klemperer: The microwave spectrum of K = O states of Ar-NH3. J. Chem. Phys. 85, 5512 (1986)ADSCrossRefGoogle Scholar
  19. 10.19
    A.E. DeMarchi (Ed.): Frequency Standards and Metrology (Springer, Berlin, Heidelberg 1989) pp.46 ff.CrossRefGoogle Scholar
  20. 10.20
    W.J. Childs: Use of atomic beam laser RF double resonance for interpretation of complex spectra. J. Opt. Soc. Am. B 9, 191 (1992)ADSCrossRefGoogle Scholar
  21. 10.21
    S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laser-fluorescence molecular-beam resonance. Phys. Rev. Lett. 35, 785 (1975)ADSCrossRefGoogle Scholar
  22. 10.22
    A.G. Adam: Laser-fluorescence molecular-beam-resonance studies of Na2 line-shape due to HFS. PhD. thesis, Univ. of Western Ontario, London, Ontario (1981);Google Scholar
  23. 10.22a
    A.G. Adam, S.D. Rosner, T.D. Gaily, R.A. Holt: Coherence effects in laser-fluorescence molecular beam magnetic resonance. Phys. Rev. A 26, 315 (1982)ADSCrossRefGoogle Scholar
  24. 10.23
    W. Ertmer, B. Hofer: Zerofield hyperfine structure measurements of the metastable states 3d 24s 4 F 3/29/2 of *SC using laser-fluorescence-atomic beam magnetic resonance technique. Z. Physik A 276, 9 (1976)ADSCrossRefGoogle Scholar
  25. 10.24
    J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner: Measurement of the hyperfine structure of metastable atomic states of 55Mm, using the ABMR-LIRF-method. Z. Physik A 291, 207 (1979);ADSCrossRefGoogle Scholar
  26. 10.24a
    J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner: Z. Physik A 294, 313 (1980)ADSCrossRefGoogle Scholar
  27. 10.25
    N. Dimarca, V. Giordano, G. Theobald, P. Cérez: Comparison of pumping a cesium beam tube with D1 and D2 lines. J. Appl. Phys. 69, 1159 (1991)ADSGoogle Scholar
  28. 10.26
    G.W. Chantry (Ed.): Modern Aspects of Microwave Spectroscopy (Academic, London 1979)Google Scholar
  29. 10.27
    K. Shimoda: ‘Double resonance spectroscopy by means of a laser’. In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1976) p. 197CrossRefGoogle Scholar
  30. 10.28
    K. Shimoda: ‘Infrared-microwave double resonance’. In: Laser Spectroscopy III, ed. by J.L. Hall, H.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1975) p. 279Google Scholar
  31. 10.29
    H. Jones: Laser microwave-double-resonance and two-photon spectroscopy. Commen. At. Mol. Phys. 8, 51 (1978)Google Scholar
  32. 10.30
    F. Tang, A. Olafson, J.O. Henningsen: A study of the methanol laser with a 500 MHz tunable CO2 laser. Appl. Phys. B 47, 47 (1988)ADSCrossRefGoogle Scholar
  33. 10.31
    R. Neumann, F. Träger, G. zu Putlitz: ‘Laser microwave spectroscopy’. In: Progress in Atomic Spectroscopy, ed. by H.J. Byer, H. Kleinpoppen (Plenum, New York 1987)Google Scholar
  34. 10.32
    J.C. Petersen, T. Amano, D.A. Ramsay: Microwave-optical double resonance of DND in the A 1A” (000) state. J. Chem. Phys. 81, 5449 (1984)ADSCrossRefGoogle Scholar
  35. 10.33
    R.W. Field, A.D. English, T. Tanaka, D.O. Harris, P.A. Jennings: Microwave-optical double resonance with a CW dye laser, BaO X 1 ∑ and A 1 ∑;. J. Chem. Phys. 59, 2191 (1973)ADSCrossRefGoogle Scholar
  36. 10.34
    R.A. Gottscho, J. Brooke-Koffend, R.W. Field, J.R. Lombardi: OODR spectroscopy of BaO. J. Chem. Phys. 68, 4110 (1978);ADSCrossRefGoogle Scholar
  37. 10.34a
    R.A. Gottscho, J. Brooke-Koffend, R.W. Field, J.R. Lombardi: J. Mol. Spectrosc. 82, 283 (1980)ADSCrossRefGoogle Scholar
  38. 10.35
    J.M. Cook, G.W. Hills, R.F. Curl: Microwave-optical double resonance spectrum of NH2. J. Chem. Phys. 67, 1450 (1977)ADSCrossRefGoogle Scholar
  39. 10.36
    W.E. Ernst, S. Kindt: A molecular beam laser-microwave double resonance spectrometer for precise measurements of high temperature molecules. Appl. Phys. B 31, 79 (1983)ADSCrossRefGoogle Scholar
  40. 10.37
    W.J. Childs: The hyperfine structure of alkaline-earth monohalide radicals: New methods and new results 1980–82. Comments At. Mol. Phys. 13, 37 (1983)Google Scholar
  41. 10.38
    W.E. Ernst, S. Kindt, T. Törring: Precise Stark-effect measurements in the Vground state of CaCl. Phys. Rev. Phys. Lett. 51, 979 (1983);ADSCrossRefGoogle Scholar
  42. 10.38a
    W.E. Ernst, S. Kindt, T. Töning: Phys. Rev. A 29, 1158 (1984)ADSCrossRefGoogle Scholar
  43. 10.39
    W. Demtröder, D. Eisel, H.J. Foth, G. Höning, M. Raab, H.J. Vedder, D. Zev-golis: Sub-Doppler laser spectroscopy of small molecules. J. Mol. Structure 59, 291 (1980)ADSCrossRefGoogle Scholar
  44. 10.40
    F. Bylicki, G. Persch, E. Mehdizadeh, W. Demtröder: Saturation spectroscopy and OODR of NO2 in a collimated molecular beam. Chem. Phys. 135, 255 (1989)CrossRefGoogle Scholar
  45. 10.41
    M.A. Johnson, C.R. Webster, R.N. Zare: Rotational analysis of congested spectra: Application of population labelling to the BaI C-X system. J. Chem. Phys. 75, 5575 (1981)ADSCrossRefGoogle Scholar
  46. 10.42
    M.A. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow: Identifiction of absorption lines by modulated lower-level population: Spectrum of Na2. Phys. Rev. Lett. 36, 671 (1976)ADSCrossRefGoogle Scholar
  47. 10.43
    A.L. Schawlow: Simplifying spectra by laser labelling. Phys. Scripta 25, 333 (1982)ADSCrossRefGoogle Scholar
  48. 10.44
    D.P. O’Brien, S. Swain: Theory of bandwidth induced asymmetry in optical double resonances. J. Phys. B 16, 2499 (1983)ADSCrossRefGoogle Scholar
  49. 10.45
    S.A. Edelstein, T.F. Gallagher: ‘Rydberg atoms’. In: Adv. At. Mol. Phys. 14, 365 (Academic, New York 1978)ADSCrossRefGoogle Scholar
  50. 10.46
    I.I. Sobelman: Atomic Spectra and Radiative Transitions, 2nd edn., Springer Ser. Atoms and Plasmas, Vol. 12 (Springer, Berlin, Heidelberg 1992)CrossRefGoogle Scholar
  51. 10.47
    R.F. Stebbings, F.B. Dunnings (Eds.): Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge 1983)Google Scholar
  52. 10.48
    H. Figger: Experimente an Rydberg-Atomen und Molekülen. Phys. in unserer Zeit 15, 2 (1984)ADSCrossRefGoogle Scholar
  53. 10.49
    J.A.C. Gallas, H. Walther, E. Werner: Simple formula for the ionization rate of Rydberg states in static electric fields. Phys. Rev. Lett. 49, 867 (1982)ADSCrossRefGoogle Scholar
  54. 10.50
    C.E. Theodosiou: Lifetimes of alkali-metal-atom Rydberg states. Phys. Rev. A 30, 2881 (1984)ADSCrossRefGoogle Scholar
  55. 10.51
    J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hyronymus, M. Kohl, H.J. Grabka: Spectroscopy of Rydberg atoms at n = 500. Phys. Rev. Lett. 59, 2847 (1987)ADSCrossRefGoogle Scholar
  56. 10.52
    K.H. Weber, K. Niemax: Impact broadening of very high Rb Rydberg levels by Xe. Z. Physik A 312, 339 (1983)ADSCrossRefGoogle Scholar
  57. 10.53
    K. Heber, P.J. West, E. Matthias: Pressure shift and broadening of SnI Rydberg states in noble gases. Phys. Rev. A 37, 1438 (1988)ADSCrossRefGoogle Scholar
  58. 10.54
    R. Beigang, W. Makat, A. Timmermann, P.J. West: Hyperfine-induced n-mixing in high Rydberg states of 87Sr. Phys. Rev. Lett. 51, 771 (1983)ADSCrossRefGoogle Scholar
  59. 10.55
    T.F. Gallagher, W.E. Cooke: Interaction of blackbody radiation with atoms. Phys. Rev. Lett. 42, 835 (1979)ADSCrossRefGoogle Scholar
  60. 10.56
    L. Holberg, J.L. Hall: Measurements of the shift of Rydberg energy levels induced by blackbody radiation. Phys. Rev. Lett. 53, 230 (1984)ADSCrossRefGoogle Scholar
  61. 10.57
    H. Figger, G. Leuchs, R. Strauchinger, H. Walther: A photon detector for sub-millimeter wavelengths using Rydberg atoms. Opt. Commun. 33, 37 (1980)ADSCrossRefGoogle Scholar
  62. 10.58
    D. Wintgen, H. Friedrich: Classical and quantum mechanical transition between regularity and irregularity. Phys. Rev. A 35 1464 (1987)ADSCrossRefGoogle Scholar
  63. 10.59
    G. Raithel, M. Fauth, H. Walther: Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields. Phys. Rev. A 44, 1898 (1991)ADSCrossRefGoogle Scholar
  64. 10.60
    G. Wunner: Gibt es Chaos in der Quantenmechanik? Phys. Blätter 45, 139 (Mai 1989);CrossRefGoogle Scholar
  65. 10.60a
    M. Gutzwiller: Chaos in Classical and Quantum Mechanics (Springer, Berlin, Heidelberg 1990)zbMATHGoogle Scholar
  66. 10.61
    A. Holle, J. Main, G. Wiebusch, H. Rottke, K.H. Welge: ‘Laser spectroscopy of the diamagnetic hydrogen atom in the chaotic region’. In: Atomic Spectra and Collisions in External Fields, ed. by K.T. Taylor, M.H. Nayfeh, C.W. Clark (Plenum, New York 1988)Google Scholar
  67. 10.62
    P. Meystre, M. Sargent III: Elements of Quantum Optics, 2nd edn. (Springer, Berlin, Heidelberg 1991)CrossRefGoogle Scholar
  68. 10.63
    H. Held, J. Schlichter, H. Walther: Quantum chaos in Rydberg atoms. Lecture Notes in Physics 503, 1 (1998)ADSCrossRefGoogle Scholar
  69. 10.64
    A. Holle, G. Wiebusch, J. Main, K.H. Welge, G. Zeller, G. Wunner, T. Ertl, H. Ruder: Hydrogenic Rydberg atoms in strong magnetic fields. Z. Physik D 5, 271 (1987)ADSCrossRefGoogle Scholar
  70. 10.65
    H. Rottke, K.H. Welge: Photoionization of the hydrogen atom near the ionization limit in strong electric field. Phys. Rev. A 33, 301 (1986)ADSCrossRefGoogle Scholar
  71. 10.66
    C. Fahre, S. Haroche: ‘Spectroscopy of one- and two-electron Rydberg atoms’. In: Rydberg States of Atoms and Molecules, ed. by R.F. Stebbings, F.B. Dunnings (Cambridge Univ. Press, Cambridge 1983)Google Scholar
  72. 10.67
    J. Boulmer, P. Camus, P. Pillet: Autoionizing Double Rydberg States in Barium, ed. by H.B. Gilbody, W.R. Newell, F.H. Read, A.C. Smith (Elsevier, Amsterdam 1988)Google Scholar
  73. 10.68
    J. Boulmer, P. Camus, P. Pillet: Double Rydberg spectroscopy of the barium atom. J. Opt. Soc. Am. B 4, 805 (1987)ADSCrossRefGoogle Scholar
  74. 10.69
    I.C. Percival: Planetary atoms. Proc. Roy. Soc. London A 353, 289 (1977)ADSCrossRefGoogle Scholar
  75. 10.70
    R.S. Freund: ‘High Rydberg molecules’. In: Rydberg States of Atoms and Molecules, ed. by R.F. Stebbing, F.B. Dunning (Cambridge Univ. Press, Cambridge 1983);Google Scholar
  76. 10.70a
    G. Herzberg: Rydberg molecules. Ann. Rev. Phys. Chem. 38, 27 (1987)ADSCrossRefGoogle Scholar
  77. 10.71
    R.A. Bernheim, L.P. Gold, T. Tipton: Rydberg states of 7Li2 by pulsed optical-optical double resonance spectroscopy. J. Chem. Phys. 78, 3635 (1983);ADSCrossRefGoogle Scholar
  78. 10.71a
    D. Eisel, W. Demtröder, W. Müller, P. Botschwina: Autoionization spectra of Li2 and the XMATH ground state of MATH. Chem. Phys. 80, 329 (1983)CrossRefGoogle Scholar
  79. 10.72
    M. Schwarz, R. Duchowicz, W. Demtröder, C. Jungen: Autoionizing Rydberg states of Li2: analysis of electronic-rotational interactions. J. Chem. Phys. 89, 5460 (1988)ADSCrossRefGoogle Scholar
  80. 10.73
    C.H. Greene, C. Jungen: ‘Molecular applications of quantum defect theory’. In: Adv. At Mol. Phys. 21, 51 (Academic, New York 1985)ADSCrossRefGoogle Scholar
  81. 10.74
    F. Merkt: Molecules in high Rydberg states. Ann. Rev. Phys. Chemistry 48, 675 (1997);ADSCrossRefGoogle Scholar
  82. 10.74a
    F. Merkt: Chimica 54, 89 (2000)Google Scholar
  83. 10.75
    A. Osterwalder, F. Merkt: High resolution spectroscopy of high Rydberg states. Chimica 54, 89 (2000)Google Scholar
  84. 10.76
    S. Fredin, D. Gauyacq, M. Horani, C. Jungen, G. Lefevre, F. Masnou-Seeuws: S and d Rydberg series of NO probed by double resonance multiphoton ionization. Mol. Phys. 60, 825 (1987)ADSCrossRefGoogle Scholar
  85. 10.77
    U. Aigner, L.Y. Baranov, H.L. Selzle, E.W. Schlag: Lifetime enhancement of ZEKE-states in molecular clusters and cluster fragmentation. J. Electron. Spectrosc. Rci. Phenom. 112, 175 (2000)CrossRefGoogle Scholar
  86. 10.78
    M. Sander, L.A. Chewter, K. Müller-Dethlefs, E.W. Schlag: High-resolution zero-kinetic-energy photoelectron spectroscopy of NO. Phys. Rev. A 36, 4543 (1987)ADSCrossRefGoogle Scholar
  87. 10.79
    K. Müller-Dethlefs, E.W. Schlag: High-resolution ZEKE photoelectron spectroscopy of molecular systems. Ann. Rev. Phys. Chem. 42, 109 (1991);ADSCrossRefGoogle Scholar
  88. 10.79a
    E.R. Grant, M.G. White: ZEKE threshold photoelectron spectroscopy. Nature 354, 249 (1991)ADSCrossRefGoogle Scholar
  89. 10.80
    C.E.H. Descent, K. Müller-Dethlefs: Hydrogen-bonding and van der Waals Complexes Studies by ZEKE and REMP Spectroscopy. Chem. Rev. 100, 3999 (2000)CrossRefGoogle Scholar
  90. 10.81
    R. Signorelli, U. Hollenstein, F. Merkt: PFI-ZEKE photo electron spectroscopy study of the first electronic states of MATH. J. Chem. Phys. 114, 9840 (2001)ADSCrossRefGoogle Scholar
  91. 10.82
    P. Goy, M. Bordas, M. Broyer, P. Labastie, B. Tribellet: Microwave transitions between molecular Rydberg states. Chem. Phys. Lett. 120, 1 (1985)ADSCrossRefGoogle Scholar
  92. 10.83
    P. Filipovicz, P. Meystere, G. Rempe, H. Walther: Rydberg atoms, a testing ground for quantum electrodynamics. Opt. Acta 32, 1105 (1985)ADSGoogle Scholar
  93. 10.84
    C.J. Latimer: Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)ADSCrossRefGoogle Scholar
  94. 10.85
    J.C. Gallas, G. Leuchs, H. Walther, H. Figger: ‘Rydberg atoms: High resolution spectroscopy’. In: Adv. At. Mol. Phys. 20, 414 (Academic, New York 1985)ADSGoogle Scholar
  95. 10.86
    G. Alber, P. Zoller: Laser-induced excitation of electronic Rydberg wave packets. Contemp. Phys. 32, 185 (1991)ADSCrossRefGoogle Scholar
  96. 10.87
    K. Harth, M. Raab, H. Hotop: Odd Rydberg spectrum of 20Ne: High resolution laser spectroscopy and MQDT analysis. Z. Physik D 7, 219 (1987)ADSCrossRefGoogle Scholar
  97. 10.88
    V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977) Chap.5CrossRefGoogle Scholar
  98. 10.89
    T. Hänsch, P. Toschek: Theory of a three-level gas laser amplifier. Z. Physik 236, 213 (1970)ADSCrossRefGoogle Scholar
  99. 10.90
    C. Kitrell, E. Abramson, J.L. Kimsey, S.A. McDonald, D.E. Reisner, R.W. Field, D.H. Katayama: Selective vibrational excitation by stimulated emission pumping. J. Chem. Phys. 75, 2056 (1981)ADSCrossRefGoogle Scholar
  100. 10.91
    Hai-Lung Da (Guest Ed.): Molecular spectroscopy and dynamics by stimulated-emission pumpings. J. Opt. Soc. Am. B 7, 1802 (1990)Google Scholar
  101. 10.92
    G. Zhong He, A. Kuhn, S. Schiemann, K. Bergmann: Population transfer by stimulated Raman scattering with delayed pulses and by the stimulated-emission pumping method: A comperative study. J. Opt. Soc. Am. B 7, 1960 (1990)ADSCrossRefGoogle Scholar
  102. 10.93
    K. Yamanouchi, H. Yamada, S. Tsuciya: Vibrational levels structure of highly excited SO2 in the electronic ground state as studied by stimulated emission pumping spectroscopy. J. Chem. Phys. 88, 4664 (1988)ADSCrossRefGoogle Scholar
  103. 10.94
    U. Brinkmann: Higher sensitivity and extended frequency range via stimulated emission pumping SEP. Lamda Physik Highlights (June 1990) p. 1Google Scholar
  104. 10.95
    H. Weickenmeier, V. Diemer, M. Wahl, M. Raab, W. Demtröder, W. Müller: Accurate ground state potential of Cs2 up to the dissociation limit. J. Chem. Phys. 82, 5354 (1985)ADSCrossRefGoogle Scholar
  105. 10.96
    H. Weickemeier, U. Diemer, W. Demtröder, M. Broyer: Hyperfine interaction between the singlet and triplet ground states of Cs2. Chem. Phys. Lett. 124, 470 (1986)ADSCrossRefGoogle Scholar
  106. 10.97
    R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow: Simplification of spectra by polarization labelling. Phys. Rev. Lett. 37, 683 (1976)ADSCrossRefGoogle Scholar
  107. 10.98
    N.W. Carlson, A.J. Taylor, K.M. Jones, A.L. Schawlow: Two step polarization-labelling spectroscopy of excited states of Na2. Phys. Rev. A 24, 822 (1981)ADSCrossRefGoogle Scholar
  108. 10.99
    B. Hemmerling, R. Bombach, W. Demtröder, N. Spies: Polarization labelling spectroscopy of molecular Li2 Rydberg states. Z. Physik D 5, 165 (1987)ADSCrossRefGoogle Scholar
  109. 10.100
    W.E. Ernst: Microwave optical polarization spectroscopy of the X 2S state of SrF. Appl. Phys. B 30, 2378 (1983)CrossRefGoogle Scholar
  110. 10.101
    W.E. Ernst, T. Törring: Hyperfine Structure in the X 2S state of CaCl, measured with microwave optical polarization spectroscopy. Phys. Rev. A 27, 875 (1983)ADSCrossRefGoogle Scholar
  111. 10.102
    W.E. Ernst, O. Golonska: Microwave transitions in the Na3 cluster. Phys. Rev. Lett., submitted (2002)Google Scholar
  112. 10.103
    Th. Weber, E. Riedle, H.J. Neusser: Rotationally resolved fluorescence dip and ion-dip spectra of single rovibronic states of benzene. J. Opt. Soc. Am. B 7, 1875 (1990)ADSCrossRefGoogle Scholar
  113. 10.104
    M. Takayanagi, I. Hanazaki: Fluorescence dip and stimulated emission-pumping laser-induced-fluorescence spectra of van der Waals molecules. J. Opt. Soc. Am. B 7, 1878 (1990)ADSCrossRefGoogle Scholar
  114. 10.105
    H.S. Schweda, G.K. Chawla, R.W. Field: Highly excited, normally inaccessible vibrational levels by sub-Doppler modulated gain spectroscopy. Opt. Commun. 42, 165 (1982)ADSCrossRefGoogle Scholar
  115. 10.106
    M. Elbs, H. Knöckel, T. Laue, C. Samuelis, E. Tiemann: Observation of the last bound levels near the Na2 ground state asymptote. Phys. Rev. A 59, 3665 (1999)ADSCrossRefGoogle Scholar
  116. 10.107
    A. Crubellier, O. Dulieu, F. Masnou-Seeuws, M. Elbs, H. Knöckel, E. Tiemann: Simple determination of Na2 scattering lengths using observed bound levels of the ground state asymptote. Eur. Phys. J. D 6, 211 (1999)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations