Life at the Edge: Achieving Prediction from Environmental Variability and Biological Variety

  • A. RogersEmail author
  • D. Billett
  • W. Berger
  • E. Flach
  • A. Freiwald
  • J. Gage
  • D. Hebbeln
  • C. Heip
  • O. Pfannkuche
  • E. Ramirez-Llodra
  • L. Medlin
  • M. Sibuet
  • K. Soetaert
  • O. Tendal
  • A. Vanreusel
  • M. Wlodarska-Kowalczuk


The ocean margins contain a great variety of habitats and biological communities. Recent discoveries, such as deep-water coral reefs, show that these communities are poorly described and understood. However, observations have already indicated that benthic communities on ocean margins show high levels of spatial and temporal variation at all scales. The European continental margin is increasingly exploited for both biological resources (fisheries) and non-biological resources (oil, gas, minerals). Environmental management of the exploitation of continental margins requires an understanding of natural levels of variation inherent in biological communities that are potentially impacted by such activities. This paper presents a synthesis of the present knowledge of the spatial and temporal variation of slope communities. Priorities for future research and its technological development are discussed. The aim of this research is to provide a scientific basis for the environmental management of the continental slopes of Europe.


Continental Margin Benthic Community Continental Slope Orange Roughy Coral Ecosystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Billett DSM, Bett DJ, Rice AL, Thurston MH, Galéron J, Sibuet M, Wo1ffGA (in press) Long term changes in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Prog OceanogrGoogle Scholar
  2. Billett DSM, Lampitt RS, Rice AL, Mantoura RFC (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522CrossRefGoogle Scholar
  3. Blacker RW (1957) Benthic animals as indicators of hydrographic conditions and climatic change in Svalbard waters. Fish Invest MAFF (ser 2) 20 (10): 49 ppGoogle Scholar
  4. Blacker RW (1965) Recent changes in the benthos of the West Spitsbergen fishing grounds. Spec Publ Int Comm NW Atlantic Fish 6:791–794Google Scholar
  5. Boehlert GW, Genin A (1987) A review of the effects of seamounts on biological processes. In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, Islands and Atolls. Geophysical Monograph 43, American Geophysical Union, Washington DC pp 319–334CrossRefGoogle Scholar
  6. Bronsdon SK, Tyler PA, Rice AL, Gage JD (1993) Reproductive biology of two epizoic anemones from bathyal and abyssal depths in the NE Atlantic Ocean. J Mar Biol Ass UK 73:531–541CrossRefGoogle Scholar
  7. Cracraft J (1989) Speciation and its ontology, the empirical consequences of alternative species concepts for understanding patterns and process of differentiation. In: Otte D, Endler JA (eds) Speciation and its Consequences. Sinauer Associates, Sunderland MA pp 28–59Google Scholar
  8. Cronin TM, Raymo ME (1997) Orbital forcing of deepsea benthic species diversity. Nature 385:624–627CrossRefGoogle Scholar
  9. Dyer MF, Cranmer GJ, Fry PD, Fry WG (1984) The distribution of benthic hydrographic indicator species in Svalbard waters 1978–1981. J Mar Biol Ass UK 64:667–677CrossRefGoogle Scholar
  10. Flach E, de Bruin W (1999) Diversity patterns in macrobenthos across a continental slope in the NE Atlantic. J Sea Res 42:303–323CrossRefGoogle Scholar
  11. Flach E, Lavalaye M, de Stiger H, Thomsen L (1998) Feeding types of the benthic community and particulate transport across the slope of the NW European continental margin (Goban Spur). Prog Oceanogr 42:209–231CrossRefGoogle Scholar
  12. Freiwald A, Wilson JB, Henrich R (1999) Grounding Pleistocene icebergs shape Recent deep-water reefs. Sed Geol 125 (1–2): 1–8CrossRefGoogle Scholar
  13. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 365–385Google Scholar
  14. Gage JD (1996) Why are there so many species in deepsea sediments? J Exp Mar Biol Ecol 200:257–286CrossRefGoogle Scholar
  15. Gage JD, Tyler PA (1991) Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge University Press, Cambridge, UK 504 pCrossRefGoogle Scholar
  16. Gosling EM (1994) Speciation and species concepts in the marine environment. In: Beaumont AR (ed) Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London pp 1–15Google Scholar
  17. Grassle JF (1991) Deep-sea benthic biodiversity. Biosciences 41:464–469CrossRefGoogle Scholar
  18. Grassle JF, Maciolek NJ (1992) Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341CrossRefGoogle Scholar
  19. Hecker B (1989) Megafaunal populations in Lydonia canyon with notes on three other Atlantic canyons. Proceedings of the North Atlantic Submarine Canyons Workshop, Feb 7–9, 1989 Vol 11:63–66Google Scholar
  20. Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms. In: Beaumont AR (ed) Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London pp 122–134Google Scholar
  21. Heezen BC, Hollister CD (1971) The Face of the Deep. Oxford University Press, New York 659 pGoogle Scholar
  22. Koslow JA (1997) Seamounts and the ecology of deepsea fisheries. Am Sci 85:168–176Google Scholar
  23. Koslow JA, Boehlert GW, Gordon JDM, Haedrich RL, Lorance P, Parin N (2000) Continental slope and deepsea fisheries: Implications for a fragile ecosystem. ICES J Mar Sci 57:548–557CrossRefGoogle Scholar
  24. Koslow JA, Gowlett-Jones K (1998) The seamount fauna off Southern Tasmania: Benthic communities, their conservation and impacts of trawling. Final Report to Environment Australia and the Fisheries Research Development Coorperation. Fisheries Research and Development Coorperation, Australia 104pGoogle Scholar
  25. Manhart JR, McCourt RM (1992) Molecular data and the species concept in the algae. J Phycol 28:730–737CrossRefGoogle Scholar
  26. Mauchline J, Gordon JDM (1991) Oceanic pelagic prey of benthopelagic fish in the benthic boundary layer of a marginal oceanic region. Mar Ecol Prog Ser 74:109–115CrossRefGoogle Scholar
  27. Olsgard F, Gray JS (1995) A comprehensive analysis of the effects of offshore oil and gas exploration and production on the benthic communities of the Norwegian continental shelf. Mar Ecol Prog Ser 122:277–306CrossRefGoogle Scholar
  28. Ormerod WG, Webster IC, Audus H, Riemer PWF (1993) An overview of large scale CO2 disposal options. In: Riemer PWF (ed) Proceedings of the International Energy Agency Carbon Dioxide Disposal Symposium, 1993. Energy Convers Manage 34 (9–11):833–840Google Scholar
  29. Paterson GLJ, Lambshead PJD (1995) Bathymetric patterns of polychaete diversity in the Rockall Trough, northeast Atlantic. Deep-Sea Res 42:1199–1214CrossRefGoogle Scholar
  30. Rice AL, Thurston MH, Bett BJ (1994) The IOSDL program — introduction and photographic evidence for the presence and absence of a seasonal input of phytodetritus at contrasting abyssal sites in the northeastern Atlantic. Deep-Sea Res 41:1305–1320CrossRefGoogle Scholar
  31. Rogers AD (1994) The biology of seamounts. Adv Mar Biol 30:305–350CrossRefGoogle Scholar
  32. Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406Google Scholar
  33. Rogers AD (2002) Molecular ecology and evolution of slope species. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 323–337Google Scholar
  34. Rowe GT (1971) Observations on bottom currents and epibenthic populations in Hatteras Submarine Canyon. Deep-Sea Res 18:569–581Google Scholar
  35. Ruzzante DE, Taggart CT and Cook D (1996) Spatial and temporal; variation in the genetic composition of a larval cod (Gadus morhua) aggregation: Cohort contribution and genetic stability. Can J Fish Aquat Sci 53:2695–2705CrossRefGoogle Scholar
  36. Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligoforbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8:407–417CrossRefGoogle Scholar
  37. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567Google Scholar
  38. Sibuet M, Olu K (2002) Cold seep communtities on continental margins. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 235–251Google Scholar
  39. Smart CW, Gooday AJ (1997) Recent benthic foraminifera in the abyssal northeast Atlantic Ocean: Relation to phytodetrital inputs. J Foram Res 27:85–92CrossRefGoogle Scholar
  40. Sournia A (1988) Phaeocystis (Prymnesiophyceae) — How many species? Nova Hedwigia 47:211–217Google Scholar
  41. Tilman D, Kilham S S, Kilham P (1982) Phytoplankton community ecology — the role of limiting nutrients. Ann Rev Ecol Syst 13:349–372CrossRefGoogle Scholar
  42. Tyler PA, Grant A, Pain SL, Gage JD (1982) Is annual reproduction in deep-sea echinoderms a response to variability in their environment? Nature 300:747–750CrossRefGoogle Scholar
  43. Turley C (2000) Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol Ecol 33:89–99Google Scholar
  44. Vanreusel A, Vincx M, Bett BJ, Rice AL (1995) Nematode biomass spectra at 2 abyssal sites in the NE Atlantic with a contrasting food supply. Int Rev Ges Hydrobiol 80:287–296CrossRefGoogle Scholar
  45. Vetter EW (1994) Hotspots ofbenthic production. Nature 372:47CrossRefGoogle Scholar
  46. Vetter EW, Dayton PK (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Res II 45:25–54Google Scholar
  47. Vézina AF, Platt T (1988) Food web dynamics in the ocean. 1. Best-estimates of flow networks using inverse methods. Mar Ecol Prog Ser 42:269–287CrossRefGoogle Scholar
  48. Witte U (1996) Seasonal reproduction in deep-sea sponges triggered by vertical particle flux? Mar Biol 124:571–581CrossRefGoogle Scholar
  49. Yayanos AA (1998) Empirical and theoretical aspects of life at high pressure in the deep-sea. In: Horikoshi K, Grant WD (eds) Extremophiles: Microbial Life in Extreme Environments. J Wiley & Sons, Chichester pp 47–92Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Rogers
    • 1
    Email author
  • D. Billett
    • 2
  • W. Berger
    • 3
  • E. Flach
    • 4
  • A. Freiwald
    • 5
  • J. Gage
    • 6
  • D. Hebbeln
    • 7
  • C. Heip
    • 8
  • O. Pfannkuche
    • 9
  • E. Ramirez-Llodra
    • 1
  • L. Medlin
    • 10
  • M. Sibuet
    • 11
  • K. Soetaert
    • 8
  • O. Tendal
    • 12
  • A. Vanreusel
    • 13
  • M. Wlodarska-Kowalczuk
    • 14
  1. 1.School of Ocean & Earth Science, Southampton Oceanography CentreUniversity of SouthamptonSouthamptonUK
  2. 2.George Deacon Division for Ocean ProcessesSouthampton Oceanography CentreSouthamptonUK
  3. 3.Scripps Institution of OceanographyUCLASan Diego, La JollaUSA
  4. 4.Department of Systems EcologyUniversity of StockholmStockholmSweden
  5. 5.Institut und Museum für Geologie und PaläontologieUniversität TübingenTübingenGermany
  6. 6.Dunstaffnage Marine LaboratoryScottish Association for Marine ScienceOban, ArgyllUK
  7. 7.Fachbereich GeowissenschaftenUniversität BremenBremenGermany
  8. 8.NIOO-CEMOYersekeThe Netherlands
  9. 9.GEOMARKielGermany
  10. 10.Alfred Wegener InstitutBremerhavenGermany
  11. 11.DRO/Dépt Environment Profond, IFREMERCentre de BrestPlouzane CedexFrance
  12. 12.Zoological MuseumUniversity of CopenhagenCopenhagenDenmark
  13. 13.Marine Biology SectionUniversity of GentGentBelgium
  14. 14.Marine Ecology Department, Polish Academy of SciencesInstitute of OceanographySopotPoland

Personalised recommendations