Advertisement

The Importance of Mineralization Processes in Surface Sediments at Continental Margins

  • M. ZabelEmail author
  • C. Hensen
Chapter

Abstract

This paper is intended to give a brief overview covering the main aspects of mineralization and preservation of organic carbon in continental margin sediments. It is not meant to be a comprehensive overview of the whole subject. Instead, we will summarise the relevant subjects, present data from a number of well studied sites from different areas of the world ocean and focus on the aspects of lateral sediment advection, the role of oxygen minimum zones and the preservation/ dissolution of calcium carbonate. We also summarise data compiled in different studies and compare it to global estimates to be able to better evaluate the role of mineralization in ocean margin sediments for the world oceans.

Keywords

Continental Margin Particulate Organic Carbon Terrestrial Organic Matter Oxygen Minimum Zone Calcite Dissolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RF, Rowe GT, Kemp PF, Trumbores S, Biscaye PE (1994) Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res II 41:669–703Google Scholar
  2. Antoine D, André JM, Morel A (1996) Oceanic primary production; 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob Biogeochem Cycl 10(1):57–69CrossRefGoogle Scholar
  3. Archer DE (1996) A data-driven model of the global calcite lysocline. Glob Biogeochem Cycl 10:511–526CrossRefGoogle Scholar
  4. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20CrossRefGoogle Scholar
  5. Berelson WM, Hammond DE, McManus J, Kilgore TE (1994) Dissolution kinetics of calcium carbonate in equatorial Pacific sediments. Glob Biogeochem Cycl 8:219–235CrossRefGoogle Scholar
  6. Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am J Sci 282:451–473CrossRefGoogle Scholar
  7. Broecker WS, Peng T-H (1987) The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycl 1:15–29.CrossRefGoogle Scholar
  8. Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res 36:121–138CrossRefGoogle Scholar
  9. Canfield DE (1993) Organic matter oxidation in marine sediments. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P, and S in Biogeochemical Cycles and Global Change, NATO ASI Series 14, Springer, Berlin pp 333–363CrossRefGoogle Scholar
  10. Cai WJ, Reimers CE (1995) Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep-Sea Res 42:1681–1699CrossRefGoogle Scholar
  11. Christensen JP, Murray JW, Devol AH, Codispoti LA (1987) Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Glob Biogeochem Cycl 1:97–116CrossRefGoogle Scholar
  12. De Baar HJW, Suess E (1993) Ocean carbon cycle and climate change — An introduction to the interdisciplinary Union Symposium. Glob Planet Change 8: VII–XICrossRefGoogle Scholar
  13. Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2:9–31CrossRefGoogle Scholar
  14. Emerson S, Bender M (1981) Carbon fluxes at the sediment-water interface of the deep-sea; calcium carbonate preservation. J Mar Res 39:139–162Google Scholar
  15. Ferdelman TG, Lee C, Pantojy S, Harder J, Bebout BM, Fossing H (1997) Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim Cosmochim Acta 61:3065–3079CrossRefGoogle Scholar
  16. Giraudeau J, Bailey GW, Pujol C (2000) A high-resolution time-series analyses ofparticle fluxes in the Northern Benguela coastal upwelling system: Carbonate record of changes in biogenic production and particle transfer processes. Deep-Sea Res II 47:1999–2028Google Scholar
  17. Haese RR (2002) Macrobenthic activity and its effects on biogeochemical reactions and fluxes. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 219–234Google Scholar
  18. Hales B, Emerson S (1997) Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater O2, pH, and CO2(aq). Geochim Cosmochim Acta 61(3):501–514CrossRefGoogle Scholar
  19. Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–574CrossRefGoogle Scholar
  20. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115CrossRefGoogle Scholar
  21. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean. Org Geochem 27(5/6):195–212CrossRefGoogle Scholar
  22. Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: progress and perplexity. Mar Chem 39:119–149CrossRefGoogle Scholar
  23. Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5(3/4):191–237CrossRefGoogle Scholar
  24. Hensen C, Landenberger H, Zabel M, Schulz HD (1998) Quantification of diffusive benthic fluxes of nitrate, phosphate and silicate in the Southern Atlantic Ocean. Glob Biogeochem Cycl 12(1):193–210CrossRefGoogle Scholar
  25. Hensen C, Zabel M, Schulz HD (2000) A comparison of benthic nutrient fluxes from deep-sea sediments off Namibia and Argentina. Deep-Sea Res II 47:2029–2050Google Scholar
  26. Jahnke RA (1996) The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob Biogeochem Cycl 10:71–88CrossRefGoogle Scholar
  27. Jahnke RA, Jahnke DB (2000) Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depotcenter. Deep-Sea Res 47: 1405–1428CrossRefGoogle Scholar
  28. Jørgensen BB (1982) Mineralization of organic matter in the sea bed — the role of sulphate reduction. Nature 296:643–645CrossRefGoogle Scholar
  29. Jorgensen BB (1983) Processes at the sediment-water interface. In: Bolin B, Cook RB (eds) The Major Biogeochemical Cycles and their Interactions. SCOPE, Wiley, New York, pp 477–515Google Scholar
  30. Kennish MJ (1997) Practical handbook of estuarine and marine pollution. CRC Press, Boca Raton, Florida, 524 pGoogle Scholar
  31. Ku TCW, Walter LM, Coleman ML, Blake RE, Martin AM (1999) Coupling between sulphur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulphur isotope composition ofpore water sulphate, South Florida Platform, USA. Geochim Cosmochim Acta 63(17):2529–2546CrossRefGoogle Scholar
  32. Liu KK, Atkinson L, Chen CTA, Gao S, Hall J, Macdonald RW, Talaue McManus L, Quiòones R (2000) Are continental margin carbon fluxes sig- nificant to the global ocean carbon budget? EOS 81(52): 641–644CrossRefGoogle Scholar
  33. Lohse L, Helder W, Epping EHG, Balzer W (1998) Recycling of organic matter along a shelf-slope transect across the NW European Continental Margin (Goban Spur). Prog Oceanogr 42:77–110CrossRefGoogle Scholar
  34. Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17(6):1245–1271CrossRefGoogle Scholar
  35. Mackenzie FT, Ver LM, Sabine C, Lane M, Lerman A (1993) C, N, P, S global biogeochemical cycles and modelling of global change. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P, and S in Biogeochemical Cycles and Global Change. NATO ASI Series, 14, Springer, Berlin pp 1–61CrossRefGoogle Scholar
  36. Middelburg JJ, Vlug T, Jaco F, Van der Nat WA (1993) Organic matter mineralization in marine systems. Glob Planet Changes 8:47–58CrossRefGoogle Scholar
  37. Middelburg JJ, Soetaert K, Herman PMJ (1997) Empirical relationships for use in global diagenetic models. Deep-Sea Res 44(2):327–344.CrossRefGoogle Scholar
  38. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Glob Biogeochem Cycl 7(4):927–957CrossRefGoogle Scholar
  39. Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geol Rdsch 85:496–504CrossRefGoogle Scholar
  40. Morse JW, Mackenzie FT (1990) Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam, 707 pGoogle Scholar
  41. Pedersen TF, Shimmield GB, Price NB (1992) Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin. Geochim Cosmochim Acta 56:545–551CrossRefGoogle Scholar
  42. Pfeifer K, Hensen C, Adler M, Wenzhöfer M, Strotmann B, Schulz HD (2000) Modeling of subsurface calcite dissolution regarding respiration and reoxidation processes in the equatorial upwelling off Gabon. Abstract, Goldschmidt Conference, Oxford, September 3rd-8th 2000Google Scholar
  43. Otto S (1996) Die Bedeutung von gelöstem organischen Kohlenstoff (DOC) für den Kohlenstofffluß im Ozean. Ph.D. Thesis, Berichte 87, Fachbereich Geowissenschaften, University of Bremen, 150 pGoogle Scholar
  44. Ransom B, Kim D, Kastner M, Wainwright S (1998) Organic matter preservation on continental slopes: Importance of mineralogy and surface area. Geochim Cosmochim Acta 62(8):1329–1345CrossRefGoogle Scholar
  45. Reimers CE, Jahnke RA, McCorkle DC (1992) Carbon fluxes and burial rates over the continental slope and rise of central California with implications for the global carbon cycle. Glob Biogeochem Cycl 6:199–224CrossRefGoogle Scholar
  46. Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: Reestimating flux- and burial rates. Int J Earth Sci 88:599–606CrossRefGoogle Scholar
  47. Schneider RR, Schulz HD, Hensen C (2000) Marine carbonates: Their formation and destruction. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin pp 283–307CrossRefGoogle Scholar
  48. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89CrossRefGoogle Scholar
  49. Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650CrossRefGoogle Scholar
  50. Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. Adv Microbial Ecol 16:41–84CrossRefGoogle Scholar
  51. Thomsen L (2002) The benthic boundary layer. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 143–156Google Scholar
  52. Van der Weijden CH, Reichart GJ, Visser HJ (1999) Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep-Sea Res I 46:807–830Google Scholar
  53. Ver LM, Mackenzie FT, Lerman A (1999) Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chem Geol 159: 283–304CrossRefGoogle Scholar
  54. Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350:53–55CrossRefGoogle Scholar
  55. Wenzhöfer F, Adler M, Kohls O, Hensen C, Strotmann B, Boehme S, Schulz HD (in press) Calcite dissolution driven by benthic mineralisation in the deep-sea: In situ measurements of Ca2+, pH, pCO2, O2. Geochim Cosmochim ActaGoogle Scholar
  56. Zabel M, Dahmke A, Schulz HD (1998) Regional distribution of diffusive phosphate and silicate fluxes through the sediment-water interface: The eastern South Atlantic. Deep-Sea Res 45:277–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Fachbereich GeowissenschaftenUniversität BremenBremenGermany

Personalised recommendations