Skip to main content

Fluid Flow in Continental Margin Sediments

  • Chapter

Abstract

The transfer of solutes and gases across the sediment-water interface through fluid flow at vents and seeps are complementing the inputs of nutrients, methane and xenobiotics through riverine and atmospheric input and diffusive fluxes from the seafloor to the water column of the continental margin. Fluid advection through sediments provide an efficient mechanism for the upward transport of reactive components and trace gases like methane and carbon dioxide, otherwise remineralised or precipitated within the sediment without impact on the chemistry of the ocean or the biota at the seafloor. Studies on submarine groundwater discharge and fluid venting along accretionay ridges emphasise the importance of fluid flow for hydrological budgets, biogeochemical cycles, and physical properties of sediments. Offshore plankton blooms, methane and trace element plumes, and release of large amounts of fresh water reveal the ecological and economic significance of submarine fluid discharge in the coastal zone. Along accretionary ridges, vent sites are characterised by the unique consortium of benthic organisms, formations of massive authigenic carbonates, methane plumes, and occurrences of gas hydrate. These features are associated with fluid flow in sediments. Techniques and tracers for localisation of discharge sites and quantification of discharge rates are introduced. The similarities between these two environmental settings characterised by fluid flow are considered and potential needs for future studies are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry JP, Greene HG, Orange DL, Baxter CH, Robison BH, Kochevar RE, Nybakken JW, Reed DL, McHugh CM (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep-Sea Res 43:1739–1762

    Article  Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from Cascadia subduction zone and their relation to gas hydrate stability. Geol 26:647–650

    Article  Google Scholar 

  • Bugna GC, Chanton JP, Cable JE, Burnett WC, Cable PH (1996) The importance of groundwater discharge to the methane budgets of nearshore and continental shelf waters of the northeastern Gulf of Mexico. Geochim Cosmochim Acta 60: 4735–4746

    Article  Google Scholar 

  • Burnett WC (1998) SCOR and LOICZ examine submarine groundwater discharge. IGPB Newsletter 36:13

    Google Scholar 

  • Bussmann I, Suess E (1998) Groundwater seepage in Eckernförde Bay (Western Baltic Sea): Effect on methane and salinity distribution of the water column. Cont Shelf Res 18: 1795–1806

    Article  Google Scholar 

  • Cable JE, Burnett WC, Chanton JP, Weatherly GL (1996) Estimating groundwater discharge into the north-eastern Gulf of Mexico using radon-222. Earth Planet Sci Lett 144:591–604

    Article  Google Scholar 

  • Carson B, Seke E, Paskevich V, Wolmes ML (1994) Fluid expulsion sites on the Cascadia accretionary prism: Mapping direct diagenetic deposits with processed GLORIA. J Geophys Res 99: 959–969

    Article  Google Scholar 

  • Corbett DR, Chanton J, Burnett W, Dillon K, Rutkowski C, Fourqurean J (1999) Patterns of groundwater discharge into Florida Bay. Limnol Oceanogr 44: 1045–1055

    Article  Google Scholar 

  • Dando PR, Hughes JA, Leahy Y, Taylor LJ, Zivanovic S (1995) Earthquakes increase hydrothermal venting and nutrient inputs into the Aegean. Cont Shelf Res 15: 655–662

    Article  Google Scholar 

  • Davis EE, Becker K, Wang K, Carson B (1995) Longterm observations ofpressure and temperature in Hole 892B, Cascadia Accretionary Prism. Proc ODP Sci Results 146:299–311

    Google Scholar 

  • Henry P, Foucher JP, Le Pichon X, Sibuet M, Kobayashi K, Traits P, Chamot-Rooke N, Furuta T, Schultheiss P (1992) Interpretation of temperature measurements from the Kaiko-Nankai cruise: Modelling of fluid flow in clam colonies. Earth Planet Sci Lett 109:355–371

    Article  Google Scholar 

  • Hovland, M, Judd AG, 1988. Seabed Pockmarks and Seepages. Graham & Trotman, London

    Google Scholar 

  • Hüttel M, Ziebis W, Forster S (1996) Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr 41:309–322

    Article  Google Scholar 

  • Jahnke RA, Nelson JR, Marinelli RL, Eckman, JE (2000) Benthic flux ofbiogenic elements on the south-eastern US continental shelf: Influence of pore water advective transport and benthic microalgae. Cont Shelf Res 20:109–127

    Article  Google Scholar 

  • Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373

    Article  Google Scholar 

  • Kohout F (1966) Submarine springs: A neglected phenomenon of coastal hydrology. Hydro126:391–413

    Google Scholar 

  • Kvenvolden KA, Ginsburg GD, Soloviev VA (1993) Worldwide distribution of subaquatic gas hydrates. Geo-Mar Lett 13:32–40

    Article  Google Scholar 

  • Laroche J, Nuzzi R, Waters R, Wyman K, Falkowski P, Wallace D (1997) Brown tide blooms in Long Island’s coastal waters linked to interannual variability in groundwater flow. Glob Change Biol 3:397–410

    Article  Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147

    Article  Google Scholar 

  • Le Pichon X, Foucher JP, Boulegue J, Henry P, Lallemant S, Benedetti M, Avedik F (1990) Mud volcano field seaward of the Barbados accretionary complex: A submersible survey. J Geophys Res 95:8931–8943

    Article  Google Scholar 

  • Linke P Suess E, Torres M, Martens V, Rugh WD, Ziebis W, Kulm LD (1994) In situ measurement of fluid flow from cold seeps at active continental margins. DeepSea Res 41:721–739

    Article  Google Scholar 

  • MacDonald IR, Guinasso NL, Sassen R, Brooks JM, Lee L, Scott KT (1994) Gas hydrate that breaches the seafoor on the continental slope ofthe Gulf ofMexico. Geol 22:699–702

    Article  Google Scholar 

  • Mienert J, Posewang J, Lukas D (2001) Changes in the hydrate stability zone on the Norwegian margin and their consequence for methane and carbon releases into the oceanosphere. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic: A Changing Environment. Springer, Berlin pp 259–280

    Chapter  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380: 612–614

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: A reaction zone of ground water and sea water. Mar Chem 65: 111–125

    Article  Google Scholar 

  • Moore WS, Shaw TJ (1998) Chemical signals from submarine fluid advection onto the continental shelf. J Geophys Res 103:21543–21552

    Article  Google Scholar 

  • Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30: 113 – 135

    Article  Google Scholar 

  • Olu K, Lance S, Sibuet M, Henry P, Fiala-Médioni A, Dinet A (1997) Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. DeepSea Res 44:811–841

    Article  Google Scholar 

  • Sauter E, Laier T, Andersen C, Dahlgaard H, Schlüter M (in press) Sampling of sub-seafloor aquifers by a temporary well for CFC age dating and natural tracer investigations. J Sea Res

    Google Scholar 

  • Sayles FL, Dickinson WH (1991) The Seep Meter: a benthic chamber for the sampling and analysis of low velocity hydrothermal vents. Deep-Sea Res 38: 129–141

    Article  Google Scholar 

  • Schlüter M, Linke P, Suess E (1998) Geochemistry at a sealed deep-sea borehole of the Cascadia Margin. Mar Geol 148:9–20

    Article  Google Scholar 

  • Screaton EJ, Carson B, Lennon GP (1995) Hydrogeologic properties of a thrust fault within the Oregon accretionary prism. J Geophys Res 100:20025–20035

    Article  Google Scholar 

  • Shaw TJ, Moore WS, Kloepfer J, Sochaski MA (1998) The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge. Geochim Cosmochim Acta 62:3047–3054

    Article  Google Scholar 

  • Suess E, Carson B, Ritger SD, Moore JC, Kulm LD, Cochrane GR (1985) Biological communities at vent sites along the subduction zone off Oregon. In: Jones ML (ed) The Hydrothermal Vents of the Eastern Pacific: An Overview. Vol. 6, Bull Biol Soc Washington, pp 475–484

    Google Scholar 

  • Suess E, Bohrmann G, von Huene R, Linke P, Wallmann K, Lammers S, Sahling H, Winckler G, Lutz RA, Orange D (1998) Fluid venting in the eastern Aleutian subduction zone. J Geophys Res 103:2597–2614

    Article  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: Enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    Article  Google Scholar 

  • Valiela I, D’Elia C (1990) Groundwater inputs to coastal waters. Biogeochem 10: 328 p

    Google Scholar 

  • Vanderborght JP, Wollast R, Billen G (1977) Kinetic models of diagenesis in disturbed sediments. Part I. Mass transfer properties and silica diagenesis. Limnol Oceanogr 22:787–793

    Article  Google Scholar 

  • Vogt PR, Gardner J, Crane K (1999) The NorwegianBarents-Svalbard (NBS) continental margin: Introducing a natural laboratory ofmass wasting, hydrates, and ascent of sediment, pore water, and methane. Geo- Mar Lett 19:2–21

    Article  Google Scholar 

  • von Huene R, Scholl DV (1991) Observations at convergent margins concerning sediment subduction, erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Article  Google Scholar 

  • Westbrook GK, Carson B, Musgrave RT (1994) Proc. Ocean Drill. Program, Initial Rep 146:609p

    Google Scholar 

  • Wever TF, Abegg F, Fiedler HM, Fechner G, Stender IH (1998) Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Cont Shelf Res 18: 1715–173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlüter, M. (2002). Fluid Flow in Continental Margin Sediments. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., van Weering, T.C.E. (eds) Ocean Margin Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05127-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05127-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07872-9

  • Online ISBN: 978-3-662-05127-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics