Skip to main content

Hit-or-miss and Skeletons

  • Chapter

Abstract

In contrast to morphological transformations described so far, the hit-or-miss transformation involves SEs composed of two sets. The first has to fit the object under study while the second has to miss it. Hence, the name fit-and-miss would have been more appropriate. Hit-or-miss transformations extract all image pixels satisfying a given neighbourhood configuration such as that corresponding to an isolated background or foreground pixel. Adding to an image all pixels having a given configuration leads to the thickening operator while subtracting them from the image defines the thinning operator.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   149.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  • C. Arcelli and G. Sanniti di Baja. A one pass two-operation process to detect the skeletal pixels on the 4-distance transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (4): 411–414, April 1989.

    CrossRef  Google Scholar 

  • G. Banon and J. Barrera. Minimal representation for translation-invariant set mappings by mathematical morphology. SIAM Journal on Applied Mathematics, 51: 1782–1798, 1991.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters, 15: 1003–1011, 1994.

    CrossRef  Google Scholar 

  • G. Bertrand, J.-C. Everat, and M. Couprie. Image segmentation through operators based upon topology. Journal of Electronic Imaging, 6 (4): 395–405, 1997.

    CrossRef  Google Scholar 

  • S. Beucher. Ligne de partage des eaux: comment l’expliquer en termes de transformation fonctionnelle ? Technical Report N-699, Ecole des Mines de Paris, May 1981.

    Google Scholar 

  • S. Beucher. Segmentation d’Images et Morphologie Mathématique. PhD thesis, Ecole des Mines de Paris, June 1990.

    Google Scholar 

  • S. Beucher. Digital skeletons in Euclidean and geodesic spaces. Signal Processing, 38 (1): 127–141, July 1994.

    CrossRef  MATH  Google Scholar 

  • D. Bloomberg and P. Maragos. Generalized hit-miss operations. In P. Gader, editor, Image Algebra and Morphological Image Processing, volume SPIE-1350, pages 116–128, 1990.

    Google Scholar 

  • H. Blum. A transformation for extracting new descriptors of shape. In W. WathenDunn, editor, Models for the Perception of Speech and Visual Form, pages 362380, Cambridge, MA, 1967. M.I.T. Press.

    Google Scholar 

  • H. Blum. Biological shape and visual science (part 1). Journal of Theoretical Biology, 38: 205–287, 1973.

    CrossRef  Google Scholar 

  • G. Borgefors, I. Nyström, and G. Sanniti di Baja. Computing skeletons in three dimensions. Pattern Recognition, 32 (7): 1225–1236, 1999.

    CrossRef  Google Scholar 

  • L. Calabi and W. E. Hartnett. Shape recognition, prairie fires, convex deficiencies and skeletons. Amer. Math. Monthly, 75: 335–342, 1968.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • D. Casasent and R. Sturgill. Optical hit-or-miss morphological transforms for ATR. In A. Tescher, editor, Applications of Digital Image Processing XII, volume SPIE-1153, pages 500–510, 1990.

    Google Scholar 

  • T. Crimmins and W. Brown. Image algebra and automatic shape recognition. IEEE Transactions on Aerospace and Electronic Systems, 21 (1): 60–69, January 1985.

    MathSciNet  Google Scholar 

  • H. Freeman. Computer processing of line-drawing images. Computing Surveys, 6: 57–97, March 1974.

    CrossRef  MATH  Google Scholar 

  • Y. Ge and J. Fitzpatrick. On the generation of skeletons from discrete Euclidean distance maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (11): 1055–1066, November 1996.

    CrossRef  Google Scholar 

  • V. Goetcherian. From binary to grey tone image processing using fuzzy logic concepts. Pattern Recognition, 12: 7–15, 1980.

    CrossRef  Google Scholar 

  • M. Golay. Hexagonal parallel pattern transformation. IEEE Transactions on Computers, 18 (8): 733–740, August 1969.

    CrossRef  Google Scholar 

  • S. Gray. Local properties of binary images in two dimensions. IEEE Transactions on Computers, 20 (5): 551–561, May 1971.

    CrossRef  MATH  Google Scholar 

  • C. Hilditch. Linear skeletons form square cupboards. In B. Mertzer and D. Michie, editors, Machine Intelligence, volume 4, chapter 22, pages 403–420. University Press, Edinburgh, 1969.

    Google Scholar 

  • P. Jonker. Skeletons in N dimensions using shape primitives. Pattern Recognition Letters, 23 (6): 677–686, April 2002.

    MATH  Google Scholar 

  • T. Kong. On topology preservation in 2-D and 3-D thinning. International Journal of Pattern Recognition and Artificial Intelligence, 9 (5): 813–844, 1995.

    CrossRef  Google Scholar 

  • R. Kresch and D. Malah. Multi-parameter skeleton decomposition. In J. Serra and P. Soille, editors, Mathematical Morphology and its Applications to Image Processing, pages 141–148. Kluwer Academic Publishers, 1994.

    Google Scholar 

  • L. Lam, S.-W. Lee, and C. Suen. Thinning methodologies: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (9): 869–885, 1992.

    CrossRef  Google Scholar 

  • C. Lantuéjoul. La Squelettisation et son Application aux Mesures Topologiques des Mosaïques Polycristallines. PhD thesis, Ecole des Mines de Paris, 1978.

    Google Scholar 

  • C. Lantuéjoul. Skeletonization in quantitative metallography. In R. Haralick and J.-C. Simon, editors, Issues in Digital Image Processing, volume 34 of NATO ASI Series E, pages 107–135, Alphen aan den Rijn, 1980. Sijthoff & Noordhoff.

    CrossRef  Google Scholar 

  • S. Lobregt, P. Verbeek, and F. Groen. Three-dimensional skeletonization: principle and algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1): 75–77, January 1980.

    CrossRef  Google Scholar 

  • P. Maragos and R. Schafer. Morphological skeletons representation and coding of binary images. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34 (5): 1228–1244, October 1986.

    Google Scholar 

  • M. Matheron. Examples of topological properties of skeletons. In J. Serra, editor, Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances, chapter 11, pages 217–238. Academic Press, 1988.

    Google Scholar 

  • F. Meyer. Skeletons in digital spaces. In J. Serra, editor, Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances, chapter 13, pages 257–296. Academic Press, London, 1988.

    Google Scholar 

  • F. Meyer. Skeletons and perceptual graphs. Signal Processing, 16: 335–363, 1989.

    CrossRef  MathSciNet  Google Scholar 

  • F. Meyer. Digital Euclidean skeletons. In M. Kunt, editor, Visual Communications and Image Processing’90, volume SPIE-1360, pages 251–262, Lausanne, 1990. Society of Photo-Instrumentation Engineers.

    Google Scholar 

  • U. Montanari. A method for obtaining skeletons using a quasi-Euclidean distance. Journal of the ACM, 15 (4): 600–624, October 1968.

    CrossRef  Google Scholar 

  • S. Peleg and A. Rosenfeld. A min-max medial axis transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3: 208–210, March 1981.

    CrossRef  Google Scholar 

  • R. Peyrard, P. Soille, J.-C. Klein, and A. Tuzikov. A dedicated hardware system for the extraction of grid patterns on stamped metal sheets. In I. Pitas, editor, Proc. of 1995 IEEE Workshop on Nonlinear Signal and Image Processing, pages 867–870, Neos Marmaras, June 1995.

    Google Scholar 

  • C. Pudney. Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Computer Vision and Image Understanding, 72 (3): 404–413, December 1998.

    CrossRef  Google Scholar 

  • V. Ranwez and P. Soille. Order independent homotopic thinning. In G. Bertrand, M. Couprie, and L. Perroton, editors, Proc. of Discrete Geometry for Computer Imagery’99, volume 1568 of Lecture Notes in Computer Science, pages 337–346. Springer-Verlag, 1999.

    Google Scholar 

  • V. Ranwez and P. Soille. Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters, 23 (6): 687–702, April 2002.

    CrossRef  MATH  Google Scholar 

  • C. Ronse. A topological characterization of thinning Theoretical Computer Science, 43: 31–41, 1986.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • C. Ronse. Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics, 21: 67–79, 1988.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • C. Ronse. A lattice-theoretical morphological view on template extraction in images. Journal of Visual Communication and Image Representation, 7 (3): 273–295, September 1996.

    CrossRef  Google Scholar 

  • A. Rosenfeld. Connectivity in digital pictures. Journal of the ACM, 17 (1): 146–160, 1970.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • M. Schmitt. One pixel thick skeletons. In J. Serra and P. Soille, editors, Mathematical Morphology and its Applications to Image Processing, pages 257–264. Kluwer Academic Publishers, 1994.

    Google Scholar 

  • J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

    MATH  Google Scholar 

  • S. Svensson, G. Borgefors, and I. Nyström. On reversible skeletonization using anchor-points from distance transforms. Journal of Visual Communication and Image Representation, 10: 379–397, 1999.

    CrossRef  Google Scholar 

  • H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors. In P. Maragos, editor, Visual Communications and Image Processing, volume SPIE-1818, pages 862–876, 1992.

    Google Scholar 

  • A. Toet. A hierarchical morphological image decomposition. Pattern Recognition Letters, 11: 267–274, April 1990.

    CrossRef  MATH  Google Scholar 

  • C. Vachier, F. Meyer, C. Gratin, and H. Talbot. Filtrage par décomposition morphologique: application à l’extraction de structures rectilignes. In Reconnaissance des Formes et Intelligence Artificielle,pages 255–263, Paris, 1994. GRETSI.

    Google Scholar 

  • L. Vincent. Efficient computation of various types of skeletons. In M. Loew, editor, Medical Imaging V: Image Processing, volume SPIE-1445, pages 297–311, 1991.

    Google Scholar 

  • S. Wilson. Vector morphology and iconic neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 19 (6): 1636–1644, 1989.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (2004). Hit-or-miss and Skeletons. In: Morphological Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05088-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05088-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07696-1

  • Online ISBN: 978-3-662-05088-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics